Statistical Analysis Based on Adaptive Progressive Hybrid Censored Sample From Alpha Power Generalized Exponential Distribution

For the alpha power generalized exponential model, the maximum likelihood and Bayes estimations of unknown distribution parameters are discussed under an adaptive Type-II progressive hybrid censored sample. The confidence intervals of the distribution parameters are calculated approximately, and further employ the delta method to obtain approximate interval estimations of the associated survival function and hazard function. The Bayes estimates and the credible intervals of these quantities are also obtained. The results of simulation and analysis of an actual life data set are used to evaluate the performance the proposed method and illustrate its application possibility.

[1]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[2]  N. khan March 2016 - P4 - Classical and Bayesian Inference on 3-Step Step-Stress Accelerated Life Test Plan for Weibull Model under Modified Progressive Type-I Censoring , 2016 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  Sanku Dey,et al.  Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme , 2018 .

[5]  George Iliopoulos,et al.  Adaptive progressive Type-II censoring , 2010 .

[6]  Sanku Dey,et al.  A New Extension of Generalized Exponential Distribution with Application to Ozone Data , 2017 .

[7]  Debasis Kundu,et al.  Analysis of Type-II progressively hybrid censored data , 2006, Comput. Stat. Data Anal..

[8]  Debasis Kundu,et al.  Statistical analysis of exponential lifetimes under an adaptive Type‐II progressive censoring scheme , 2009 .

[9]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[12]  L.C. Tang,et al.  Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution , 2008 .

[13]  A. Shafay,et al.  Estimation of generalized exponential distribution based on an adaptive progressively type-II censored sample , 2017 .

[14]  Hanieh Panahi,et al.  Estimation of the inverted exponentiated Rayleigh Distribution Based on Adaptive Type II Progressive Hybrid Censored Sample , 2020, J. Comput. Appl. Math..

[15]  Debasis Kundu,et al.  Generalized exponential distribution: different method of estimations , 2001 .

[16]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[17]  M. Nassar,et al.  Estimation of the inverse Weibull parameters under adaptive type-II progressive hybrid censoring scheme , 2017, J. Comput. Appl. Math..

[18]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.