Compositions, inverses and thinnings of random measures

Compositions and inverses of measures on the real line are defined as measures whose cumulative distribution functions (c.d.f.'s) are compositions and inverses, respectively, of the c.d.f.'s of the measures involved. We study the continuity of the composition and inverse operators on measures. We then show how a large class of thinnings of point processes and random measures can be characterized by compositions of random measures. We present several convergence theorems for such compositions. These contain, as special cases, the classical thinning theorem of Renyi and many of its contemporary extensions.

[1]  Johannes Kerstan,et al.  Unbegrenzt teilbare Punktprozesse , 1974 .

[2]  Jay R. Goldman,et al.  Stochastic Point Processes: Limit Theorems , 1967 .

[3]  Thinning of Renewal Point Processes: A Flow Graph Study. , 1974 .

[4]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[5]  J. Mecke,et al.  Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .

[6]  Y. K. Belyaev Limit Theorems for Dissipative Flows , 1963 .

[7]  Richard F. Serfozo,et al.  Semi-stationary processes , 1972 .

[8]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[9]  T. Lindvall,et al.  Thinning and rare events in point processes , 1974 .

[10]  Olav Kallenberg,et al.  Limits of compound and thinned point processes , 1975, Journal of Applied Probability.

[11]  Kurt Nawrotzki,et al.  Eine Monotonieeigenschaft zufälliger Punktfolgen , 1962 .

[12]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[13]  L Råde LIMIT THEOREMS FOR THINNING OF RENEWAL POINT PROCESSES , 1972 .

[14]  Richard F. Serfozo,et al.  Processes with conditional stationary independent increments , 1972, Journal of Applied Probability.

[15]  O. Kallenberg Characterization and convergence of random measures and point processes , 1973 .

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[18]  Kurt Nawrotzki,et al.  Ein Grenzwertsatz für homogene zufällige Punktfolgen , 1962 .