A gradient‐based adaptation procedure and its implementation in the element‐free Galerkin method

A gradient-based adaptation procedure is proposed in this paper. The relative error in the total strain energy from two adjacent adaptation stages is used as a stop-criterion. The refinement–coarsening process is guided by the gradient of strain energy density, based on the assumption: a larger gradient needs a richer mesh and vice versa. The procedure is then implemented in the element-free Galerkin method for linear elasto-static problems. Numerical examples are presented to show the performance of the proposed procedure. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[2]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[3]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[4]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[5]  Ulrich Häussler-Combe,et al.  An adaptive approach with the Element-Free-Galerkin method , 1998 .

[6]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem , 2000 .

[7]  Glaucio H. Paulino,et al.  A methodology for adaptive finite element analysis: Towards an integrated computational environment , 1999 .

[8]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[9]  Ted Belytschko,et al.  An error estimate in the EFG method , 1998 .

[10]  Peter Bettess,et al.  ERROR ESTIMATES AND ADAPTIVE REMESHING TECHNIQUES IN ELASTO–PLASTICITY , 1997 .

[11]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[12]  Waldemar Rachowicz,et al.  An anisotropic h-type mesh-refinement strategy , 1993 .

[13]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[14]  M. Mukhopadhyay,et al.  Adaptive finite element analysis of mixed‐mode crack problems with automatic mesh generator , 2000 .

[15]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[17]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[18]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[19]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[20]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[21]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[22]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[23]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .

[24]  Alfonso Hernández,et al.  An adaptive meshing automatic scheme based on the strain energy density function , 1997 .

[25]  Ivo Babuška,et al.  On the reliability and optimality of the finite element method , 1979 .

[26]  Erwin Stein,et al.  Mesh adaptations for linear 2D finite-element discretizations in structural mechanics, especially in thin shell analysis , 1991 .

[27]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[28]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .