Discretization of functionals involving the Monge–Ampère operator
暂无分享,去创建一个
Quentin Mérigot | Jean-David Benamou | Guillaume Carlier | Édouard Oudet | G. Carlier | J. Benamou | Q. Mérigot | É. Oudet
[1] J. A. Carrillo,et al. Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..
[2] N. Trudinger,et al. The affine Plateau problem , 2004, math/0405541.
[3] M. Agueh,et al. One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces , 2013 .
[4] Pierre Alliez,et al. Computational geometry algorithms library , 2008, SIGGRAPH '08.
[5] M. Burger,et al. A mixed finite element method for nonlinear diffusion equations , 2010 .
[6] Bin Zhou. The first boundary value problem for Abreu's equation , 2010, 1009.1834.
[7] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[8] D. Kinderlehrer,et al. Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .
[9] Philippe Choné,et al. NON-CONVERGENCE RESULT FOR CONFORMAL APPROXIMATION OF VARIATIONAL PROBLEMS SUBJECT TO A CONVEXITY CONSTRAINT , 2001 .
[10] Jean-Marie Mirebeau. Adaptive, anisotropic and hierarchical cones of discrete convex functions , 2016, Numerische Mathematik.
[11] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[12] L. D. Prussner,et al. On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .
[13] Cristian E. Gutiérrez,et al. The Monge―Ampère Equation , 2001 .
[14] Vladimir Oliker,et al. On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .
[15] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[16] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[17] Édouard Oudet,et al. Minimizing within Convex Bodies Using a Convex Hull Method , 2005, SIAM J. Optim..
[18] Bertrand Maury,et al. A numerical approach to variational problems subject to convexity constraint , 2001, Numerische Mathematik.
[19] Guillaume Carlier,et al. Optimal Transport and Cournot-Nash Equilibria , 2012, Math. Oper. Res..
[20] José A. Carrillo,et al. Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..
[21] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .
[22] F. Santambrogio,et al. A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.
[23] Ivar Ekeland,et al. An algorithm for computing solutions of variational problems with global convexity constraints , 2010, Numerische Mathematik.
[24] Adam M. Oberman. A Numerical Method for Variational Problems with Convexity Constraints , 2011, SIAM J. Sci. Comput..
[25] Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .
[26] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[27] Augusto Visintin,et al. Strong convergence results related to strict convexity , 1984 .
[28] Quentin Mérigot,et al. Handling Convexity-Like Constraints in Variational Problems , 2014, SIAM J. Numer. Anal..
[29] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[30] M. Agueh. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.