Discretization of functionals involving the Monge–Ampère operator

Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations, following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this formulation have been limited by the difficulty to compute the Wasserstein distance in dimension $$\geqslant $$⩾2. One step of the JKO scheme is equivalent to a variational problem on the space of convex functions, which involves the Monge–Ampère operator. Convexity constraints are notably difficult to handle numerically, but in our setting the internal energy plays the role of a barrier for these constraints. This enables us to introduce a consistent discretization, which inherits convexity properties of the continuous variational problem. We show the effectiveness of our approach on nonlinear diffusion and crowd-motion models.

[1]  J. A. Carrillo,et al.  Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..

[2]  N. Trudinger,et al.  The affine Plateau problem , 2004, math/0405541.

[3]  M. Agueh,et al.  One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces , 2013 .

[4]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[5]  M. Burger,et al.  A mixed finite element method for nonlinear diffusion equations , 2010 .

[6]  Bin Zhou The first boundary value problem for Abreu's equation , 2010, 1009.1834.

[7]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[8]  D. Kinderlehrer,et al.  Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .

[9]  Philippe Choné,et al.  NON-CONVERGENCE RESULT FOR CONFORMAL APPROXIMATION OF VARIATIONAL PROBLEMS SUBJECT TO A CONVEXITY CONSTRAINT , 2001 .

[10]  Jean-Marie Mirebeau Adaptive, anisotropic and hierarchical cones of discrete convex functions , 2016, Numerische Mathematik.

[11]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[12]  L. D. Prussner,et al.  On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .

[13]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[14]  Vladimir Oliker,et al.  On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .

[15]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[16]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[17]  Édouard Oudet,et al.  Minimizing within Convex Bodies Using a Convex Hull Method , 2005, SIAM J. Optim..

[18]  Bertrand Maury,et al.  A numerical approach to variational problems subject to convexity constraint , 2001, Numerische Mathematik.

[19]  Guillaume Carlier,et al.  Optimal Transport and Cournot-Nash Equilibria , 2012, Math. Oper. Res..

[20]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[21]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .

[22]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[23]  Ivar Ekeland,et al.  An algorithm for computing solutions of variational problems with global convexity constraints , 2010, Numerische Mathematik.

[24]  Adam M. Oberman A Numerical Method for Variational Problems with Convexity Constraints , 2011, SIAM J. Sci. Comput..

[25]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[26]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[27]  Augusto Visintin,et al.  Strong convergence results related to strict convexity , 1984 .

[28]  Quentin Mérigot,et al.  Handling Convexity-Like Constraints in Variational Problems , 2014, SIAM J. Numer. Anal..

[29]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[30]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.