First-principles perspective on magnetic second sound

The fluctuations of the magnetic order parameter, or longitudinal spin excitations, are investigated theoretically in the ferromagnetic Fe and Ni as well as in the antiferromagnetic phase of the pnictide superconductor FeSe. The charge and spin dynamics of these systems is described by evaluating the generalized charge and spin density response function calculated from first-principles linear response time-dependent density functional theory within adiabatic local spin density approximation. We observe that the formally noninteracting Kohn-Sham system features strong coupling between the magnetization and charge dynamics in the longitudinal channel and that the coupling is effectively removed upon the inclusion of the Coulomb interaction in the charge channel and the resulting appearance of plasmons. The longitudinal spin fluctuations acquire a collective character without the emergence of the Goldstone boson, similar to the case of paramagnon excitations in nonmagnetic metals like Pd. In ferromagnetic Fe and Ni the longitudinal spin dynamics is governed by interactions between low-energy intraband electron-hole pairs while in quasi-two-dimensional antiferromagnet FeSe it is dominated by the interband transitions with energies of the order of exchange splitting. In the later material, the collective longitudinal magnetization fluctuations feature well-defined energies and long lifetimes for small momenta and appear below the particle-hole continuum. The modes become strongly Landau damped for growing wave vectors. We relate our theoretical findings to existing experimental spinpolarized electron energy loss spectroscopy results. In bulk bcc Fe, the longitudinal magnetic modes appear above the typical energies of transverse spin-waves, have energies comparable with the Stoner spin-flip excitation continuum and are order of magnitude less energetic than the charge dynamics.

[1]  C. Varma,et al.  Amplitude or Higgs modes in $d$-wave superconductors , 2013 .

[2]  E K U Gross,et al.  Transverse spin-gradient functional for noncollinear spin-density-functional theory. , 2012, Physical review letters.

[3]  Vladimir Antropov,et al.  Aspects of spin dynamics and magnetic interactions , 1999 .

[4]  E. Gross,et al.  Noncollinear spin-spiral phase for the uniform electron gas within reduced-density-matrix-functional theory , 2009, 0910.0534.

[5]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[6]  I. Turek,et al.  Random-phase approximation for critical temperatures of collinear magnets with multiple sublattices: Gdx compounds (X=Mg, Rh, Ni, Pd) , 2005 .

[7]  L. Sandratskii,et al.  Ab-initio theory of Iron based superconductors , 2014, 1411.2121.

[8]  Christoph Friedrich,et al.  Wannier-function approach to spin excitations in solids , 2010, 1002.4897.

[9]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[10]  L. Sandratskii,et al.  Paramagnons in FeSe close to a magnetic quantum phase transition: Ab initio study , 2012 .

[11]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[12]  J. Kirschner,et al.  Spin‐polarized electron energy loss spectroscopy at high momentum resolution , 2016 .

[13]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[14]  Jiarui Li,et al.  Prominent Role of Spin-Orbit Coupling in FeSe Revealed by Inelastic Neutron Scattering , 2016, 1610.01277.

[15]  G. Vignale,et al.  Transverse and longitudinal gradients of the spin magnetization in spin-density-functional theory , 2013, 1309.4905.

[16]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[17]  M. Tosi,et al.  Time-dependent current-density-functional theory of spin-charge separation and spin drag in one-dimensional ultracold Fermi gases. , 2008, Physical review letters.

[18]  G. Vignale,et al.  A shortcut to gradient-corrected magnon dispersion: exchange-only case , 2018, The European Physical Journal B.

[19]  D. Inosov Spin fluctuations in iron pnictides and chalcogenides: From antiferromagnetism to superconductivity , 2015, 1502.06570.

[20]  L. Sandratskii,et al.  Interface electronic complexes and Landau damping of magnons in ultrathin magnets. , 2011, Physical review letters.

[21]  Josef Kudrnovsky,et al.  Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni , 2001 .

[22]  S. Cabrini,et al.  Strongly coupled magnon–phonon dynamics in a single nanomagnet , 2019, Nature Communications.

[23]  Proceedings of the Physical Society , 1948, Nature.

[24]  P. Littlewood,et al.  Amplitude collective modes in superconductors and their coupling to charge-density waves , 1982 .

[25]  K. Nelson,et al.  Observation of second sound in graphite at temperatures above 100 K , 2019, Science.

[26]  T. R. Kirkpatrick,et al.  Metallic Quantum Ferromagnets , 2015, 1502.02898.

[27]  C. Morice,et al.  Collective mode in the SU(2) theory of cuprates , 2018, Physical Review B.

[28]  R. Grimm,et al.  Second sound and the superfluid fraction in a Fermi gas with resonant interactions , 2013, Nature.

[29]  L. Sandratskii,et al.  Chirality dependent magnon lifetime in a compensated half-metallic ferrimagnet , 2013 .

[30]  L. Sandratskii Noncollinear magnetism in itinerant-electron systems: Theory and applications , 1998 .

[31]  K. Zakeri Elementary spin excitations in ultrathin itinerant magnets , 2014 .

[32]  M. Chester Second Sound in Solids , 1963 .

[33]  A. Ernst,et al.  Spin waves in disordered materials , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Winter,et al.  Electronic density of states and the x-ray photoelectron spectra of the valence band of Cu-Pd alloys. , 1986, Physical review. B, Condensed matter.

[35]  N. Tancogne-Dejean,et al.  Time-Dependent Magnons from First Principles , 2020, Journal of chemical theory and computation.

[36]  S. Doniach THEORY OF INELASTIC NEUTRON SCATTERING IN NEARLY FERROMAGNETIC METALS. , 1967 .

[37]  Kirschner,et al.  Momentum dependence of the Stoner excitation spectrum of iron using spin-polarized electron-energy-loss spectroscopy. , 1988, Physical Review B (Condensed Matter).

[38]  Kirschner Direct and exchange contributions in inelastic scattering of spin-polarized electrons from iron. , 1985, Physical review letters.

[39]  Spin dynamics from time-dependent spin-density-functional theory. , 2001, Physical review letters.

[40]  G. Profeta,et al.  Superconducting pairing mediated by spin fluctuations from first principles , 2014, 1409.7968.

[41]  L. Sandratskii,et al.  Magnon dispersion in thin magnetic films , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  A. Goldman The Order Parameter Susceptibility and Collective Modes of Superconductors , 2007 .

[43]  P. Derlet Landau-Heisenberg Hamiltonian model for FeRh , 2012 .

[44]  Vinod Kumar Joshi,et al.  Spintronics: A contemporary review of emerging electronics devices , 2016 .

[45]  L. Sandratskii,et al.  Direct probing of the exchange interaction at buried interfaces. , 2013, Nature nanotechnology.

[46]  E. Gross,et al.  Spin-density fluctuations and the fluctuation-dissipation theorem in 3d ferromagnetic metals , 2017, 1706.00512.

[47]  L. Sandratskii,et al.  Long-living terahertz magnons in ultrathin metallic ferromagnets , 2015, Nature Communications.

[48]  Kun Cao,et al.  Ab initio calculation of spin fluctuation spectra using time-dependent density functional perturbation theory, plane waves, and pseudopotentials , 2017, 1707.05219.

[49]  L. Tisza,et al.  Transport Phenomena in Helium II , 1938, Nature.

[50]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[51]  Electron-hole and plasmon excitations in 3d transition metals: Ab initio calculations and inelastic x-ray scattering measurements , 2005, cond-mat/0508677.

[52]  D. Mills,et al.  Spin excitations in ferromagnetic Ni: Electrons and neutrons as a probe , 2000 .

[53]  L. Sandratskii,et al.  Ultrafast magnon generation in an Fe film on Cu(100). , 2010, Physical review letters.

[54]  Vignale,et al.  Spin-flip electron-energy-loss spectroscopy in itinerant-electron ferromagnets: Collective modes versus Stoner excitations. , 1985, Physical review. B, Condensed matter.

[55]  T. Gorni,et al.  Spin dynamics from time-dependent density functional perturbation theory , 2018, The European Physical Journal B.

[56]  S. Blugel,et al.  Relativistic dynamical spin excitations of magnetic adatoms , 2015, 1501.05509.

[57]  P. Anderson,et al.  Reflections on Broken Symmetry , 1991 .

[58]  L. Sandratskii,et al.  Different dimensionality trends in the Landau damping of magnons in iron, cobalt, and nickel: Time-dependent density functional study , 2011, 1109.6217.

[59]  R. Hardy Phonon Boltzmann Equation and Second Sound in Solids , 1970 .

[60]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[61]  A. L. Wysocki,et al.  Consistent model of magnetism in ferropnictides , 2010, 1011.1715.

[62]  M. Abdel-Hafiez,et al.  Magnetic ground state of FeSe , 2015, Nature Communications.

[63]  A. Eiguren,et al.  Efficient computation of magnon dispersions within time-dependent density functional theory using maximally localized Wannier functions , 2012 .

[64]  T. Perring,et al.  Anisotropic spin fluctuations in detwinned FeSe , 2019, Nature Materials.

[65]  L. Sandratskii,et al.  Symmetry analysis of electronic states for crystals with spiral magnetic order. I. General properties , 1991 .

[66]  L. Sandratskii,et al.  Standing spin waves as a basis for the control of terahertz spin dynamics: time dependent density functional theory study. , 2010, Physical review letters.

[67]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[68]  S. Louie,et al.  First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide , 2015, 1501.02200.

[69]  R. Dingle The Theory of the Propagation of First and Second Sound in Helium II. - Energy Theorems and Irreversible Processes , 1950 .

[70]  H. Mook,et al.  Direct observation of paramagnons in palladium. , 2010, Physical review letters.

[71]  L. Regnault,et al.  Longitudinal spin fluctuations in the antiferromagnet MnF2 studied by polarized neutron scattering , 2002 .

[72]  Spin drag and spin-charge separation in cold fermi gases. , 2007, Physical review letters.

[73]  H. Eschrig,et al.  Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni , 1998 .

[74]  E. Gross,et al.  Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory. , 2017, Journal of chemical theory and computation.

[75]  L. Sandratskii,et al.  Energies and lifetimes of magnons in complex ferromagnets: a first-principle study of Heusler alloys. , 2009, Physical review letters.

[76]  M. Brandt,et al.  Elastically driven ferromagnetic resonance in nickel thin films. , 2010, Physical review letters.

[77]  C. Ederer,et al.  Fast ab initio methods for the calculation of adiabatic spin wave spectra in complex systems , 2001 .

[78]  D. Görlitz,et al.  Depression of Longitudinal Fluctuations above Tc of Heisenberg Ferromagnets Observed by Polarized Neutrons , 1986 .

[79]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[80]  E. Gross,et al.  Ab initio theory of superconductivity in a magnetic field. I. Spin density functional theory for superconductors and Eliashberg equations , 2015, 1503.00985.

[81]  Lev Davidovich Landau,et al.  Theory of the Superfluidity of Helium II , 1941 .