On Quantified Propositional Logics and the Exponential Time Hierarchy

We study quantified propositional logics from the complexity theoretic point of view. First we introduce alternating dependency quantified boolean formulae (ADQBF) which generalize both quantified and dependency quantified boolean formulae. We show that the truth evaluation for ADQBF is AEXPTIME(poly)-complete. We also identify fragments for which the problem is complete for the levels of the exponential hierarchy. Second we study propositional team-based logics. We show that DQBF formulae correspond naturally to quantified propositional dependence logic and present a general NEXPTIME upper bound for quantified propositional logic with a large class of generalized dependence atoms. Moreover we show AEXPTIME(poly)-completeness for extensions of propositional team logic with generalized dependence atoms.

[1]  Heribert Vollmer,et al.  Expressivity and Complexity of Dependence Logic , 2016, Dependence Logic.

[2]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[3]  Juha Kontinen,et al.  Team Logic and Second-Order Logic , 2011, Fundam. Informaticae.

[4]  Markus Lohrey,et al.  Model-checking hierarchical structures , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[5]  J. Väänänen,et al.  Modal Dependence Logic , 2008 .

[6]  Jonni Virtema,et al.  Complexity of validity for propositional dependence logics , 2014, Inf. Comput..

[7]  Jouko Vnnen,et al.  Dependence Logic: A New Approach to Independence Friendly Logic (London Mathematical Society Student Texts) , 2007 .

[8]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[9]  Antti Kuusisto A Double Team Semantics for Generalized Quantifiers , 2015, J. Log. Lang. Inf..

[10]  J. Reif,et al.  Lower bounds for multiplayer noncooperative games of incomplete information , 2001 .

[11]  Jonni Virtema Complexity of validity for propositional dependence logics , 2017, Inf. Comput..

[12]  Pietro Galliani,et al.  Hierarchies in independence logic , 2013, CSL.

[13]  Jonni Virtema,et al.  Complexity of Propositional Independence and Inclusion Logic , 2015, MFCS.

[14]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[15]  Lauri Hella,et al.  Modal Inclusion Logic: Being Lax is Simpler than Being Strict , 2015, MFCS.

[16]  Ville Nurmi,et al.  Dependence Logic: Investigations into Higher-Order Semantics Defined on Teams , 2009 .

[17]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[18]  Martin Lück,et al.  Complete Problems of Propositional Logic for the Exponential Hierarchy , 2016, ArXiv.