l ∞ -approximation via subdominants
暂无分享,去创建一个
[1] F. Bartlett,et al. Remembering: A Study in Experimental and Social Psychology , 1932 .
[2] P. Sneath,et al. Numerical Taxonomy , 1962, Nature.
[3] L. Cavalli-Sforza,et al. PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.
[4] J. Gower,et al. Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .
[5] Arnold G. Kluge,et al. A Numerical Approach to Phylogenetic Systematics , 1970 .
[6] H. D. Brunk,et al. Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .
[7] V. Ubhaya,et al. Isotone optimization. II , 1974 .
[8] P. Buneman. A Note on the Metric Properties of Trees , 1974 .
[9] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[10] J. Carroll,et al. Spatial, non-spatial and hybrid models for scaling , 1976 .
[11] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[12] A. Tversky,et al. Additive similarity trees , 1977 .
[13] J. Cunningham,et al. Free trees and bidirectional trees as representations of psychological distance , 1978 .
[14] L. Klotz,et al. A practical method for calculating evolutionary trees from sequence data. , 1981, Journal of theoretical biology.
[15] G. Soete. A least squares algorithm for fitting additive trees to proximity data , 1983 .
[16] E. Degreef,et al. Trends in mathematical psychology , 1984 .
[17] H. Abdi,et al. Tree Representations of Associative Structures in Semantic and Episodic Memory Research , 1984 .
[18] Gildas Brossier,et al. Approximation des dissimilarités par des arbres additifs , 1985 .
[19] N. Saitou,et al. The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.
[20] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[21] W. H. Day. Computational complexity of inferring phylogenies from dissimilarity matrices. , 1987, Bulletin of mathematical biology.
[22] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[23] Mirko Krvanek. The Complexity of Ultrametric Partitions on Graphs , 1988, Inf. Process. Lett..
[24] Vladimir Batagelj,et al. An algorithm for tree-realizability of distance matrices , 1990, Int. J. Comput. Math..
[25] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[26] Hans-Jürgen Bandelt. Recognition of Tree Metrics , 1990, SIAM J. Discret. Math..
[27] Alain Guénoche,et al. Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.
[28] Frank Critchley,et al. The partial order by inclusion of the principal classes of dissimilarity on a finite set, and some of their basic properties , 1994 .
[29] B. Mellers,et al. Similarity and Choice. , 1994 .
[30] Bruno Leclerc,et al. Minimum spanning trees for tree metrics: abridgements and adjustments , 1995 .
[31] Hans-Jürgen Bandelt,et al. Symmetric Matrices Representable by Weighted Trees Over a Cancellative Abelian Monoid , 1995, SIAM J. Discret. Math..
[32] Mikkel Thorup,et al. On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.
[33] Yadolah Dodge,et al. L[1]-statistical procedures and related topics , 1997 .
[34] Jaime Cohen,et al. Numerical taxonomy on data: experimental results , 1997, SODA '97.