l ∞ -approximation via subdominants

Abstract Given a vector u and a certain subset K of a real vector space E , the problem of l ∞ -approximation involves determining an element u in K nearest to u in the sense of the l ∞ -error norm. The subdominant u ∗ of u is the upper bound (if it exists) of the set { x ∈ K  :  x ≺ u } (we let x ≺ y if all coordinates of x are smaller than or equal to the corresponding coordinates of y ). We present general conditions on K under which a simple relationship between the subdominant of u and a best l ∞ -approximation holds. We specify this result by taking as K the cone of isotonic functions defined on a poset ( X , ≺), the cone of convex functions defined on a subset of R N , the cone of ultrametrics on a set X , and the cone of tree metrics on a set X with fixed distances to a given vertex. This leads to simple optimal algorithms for the problem of best l ∞ -fitting of distances by ultrametrics and by tree metrics preserving the distances to a fixed vertex (the latter provides a 3-approximation algorithm for the problem of fitting a distance by a tree metric). This simplifies the recent results of Farach, Kannan, and Warnow (1995) and of Agarwala et al. (1996).

[1]  F. Bartlett,et al.  Remembering: A Study in Experimental and Social Psychology , 1932 .

[2]  P. Sneath,et al.  Numerical Taxonomy , 1962, Nature.

[3]  L. Cavalli-Sforza,et al.  PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.

[4]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[5]  Arnold G. Kluge,et al.  A Numerical Approach to Phylogenetic Systematics , 1970 .

[6]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[7]  V. Ubhaya,et al.  Isotone optimization. II , 1974 .

[8]  P. Buneman A Note on the Metric Properties of Trees , 1974 .

[9]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[10]  J. Carroll,et al.  Spatial, non-spatial and hybrid models for scaling , 1976 .

[11]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[12]  A. Tversky,et al.  Additive similarity trees , 1977 .

[13]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[14]  L. Klotz,et al.  A practical method for calculating evolutionary trees from sequence data. , 1981, Journal of theoretical biology.

[15]  G. Soete A least squares algorithm for fitting additive trees to proximity data , 1983 .

[16]  E. Degreef,et al.  Trends in mathematical psychology , 1984 .

[17]  H. Abdi,et al.  Tree Representations of Associative Structures in Semantic and Episodic Memory Research , 1984 .

[18]  Gildas Brossier,et al.  Approximation des dissimilarités par des arbres additifs , 1985 .

[19]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[20]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[21]  W. H. Day Computational complexity of inferring phylogenies from dissimilarity matrices. , 1987, Bulletin of mathematical biology.

[22]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[23]  Mirko Krvanek The Complexity of Ultrametric Partitions on Graphs , 1988, Inf. Process. Lett..

[24]  Vladimir Batagelj,et al.  An algorithm for tree-realizability of distance matrices , 1990, Int. J. Comput. Math..

[25]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[26]  Hans-Jürgen Bandelt Recognition of Tree Metrics , 1990, SIAM J. Discret. Math..

[27]  Alain Guénoche,et al.  Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[28]  Frank Critchley,et al.  The partial order by inclusion of the principal classes of dissimilarity on a finite set, and some of their basic properties , 1994 .

[29]  B. Mellers,et al.  Similarity and Choice. , 1994 .

[30]  Bruno Leclerc,et al.  Minimum spanning trees for tree metrics: abridgements and adjustments , 1995 .

[31]  Hans-Jürgen Bandelt,et al.  Symmetric Matrices Representable by Weighted Trees Over a Cancellative Abelian Monoid , 1995, SIAM J. Discret. Math..

[32]  Mikkel Thorup,et al.  On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.

[33]  Yadolah Dodge,et al.  L[1]-statistical procedures and related topics , 1997 .

[34]  Jaime Cohen,et al.  Numerical taxonomy on data: experimental results , 1997, SODA '97.