In situ transmission electron microscopy observation of nanostructural changes in phase-change memory.

Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge(2)Sb(2)Te(5) (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability.

[1]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[2]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[3]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[4]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[5]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[6]  S. G. Bishop,et al.  Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy , 2007 .

[7]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[8]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[9]  R. Shelby,et al.  Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. , 2007, Nature materials.

[10]  Joshua E. Goldberger,et al.  Watching GaN Nanowires Grow , 2003 .

[11]  Sung-Hoon Hong,et al.  Fast switching behavior of nanoscale Ag6In5Sb59Te30 based nanopillar type phase change memory , 2010, Nanotechnology.

[12]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[13]  Yi Cui,et al.  Large anisotropy of electrical properties in layer-structured In2Se3 nanowires. , 2008, Nano letters.

[14]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[15]  Jeung-hyun Jeong,et al.  Demonstration of a Reliable High Speed Phase-Change Memory Using Ge-Doped SbTe , 2009 .

[16]  S. Kodambaka,et al.  Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires , 2009, Science.

[17]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[18]  Dong Yu,et al.  Minimum voltage for threshold switching in nanoscale phase-change memory. , 2008, Nano letters.

[19]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[20]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[21]  A. Alivisatos,et al.  Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.

[22]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[23]  F. Ross,et al.  Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface , 2003, Nature materials.

[24]  Sung-Min Yoon,et al.  Nanoscale observations of the operational failure for phase-change-type nonvolatile memory devices using Ge2Sb2Te5 chalcogenide thin films , 2007 .

[25]  Matthias Wuttig,et al.  Threshold field of phase change memory materials measured using phase change bridge devices , 2009 .

[26]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[27]  Wei Zhang,et al.  In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides. , 2008, Ultramicroscopy.

[28]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .

[29]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[30]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[31]  Andrew M. Minor,et al.  Void formation induced electrical switching in phase-change nanowires. , 2008, Nano letters.

[32]  S. G. Bishop,et al.  Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid , 2009, Science.

[33]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[34]  Rajeev Ahuja,et al.  Unique melting behavior in phase-change materials for rewritable data storage. , 2007, Physical review letters.