Bonding and metastability for Group 12 dications

Electronic structure and bonding properties of the Group 12 dications M22+ (M = Zn, Cd, Hg) are investigated and electron density‐derived quantities are used to characterize the metastability of these species. Of particular interest are the complementary descriptions afforded by the Laplacian of the electron density ∇2ρ(r) and the one‐electron Bohm quantum potential (Q =  ∇2ρr/2ρr ) along the bond path. Further, properties derived from the pair density including the localization‐delocalization matrices (LDMs) and the interacting quantum atoms (IQA) energies are analyzed within the framework of the quantum theory of atoms in molecules (QTAIM). From the crossing points of the singlet (ground) and triplet (excited) potential energy curves, the barriers for dissociation (BFD) are estimated to be 25.2 kcal/mol (1.09 eV) for Zn22+, 22.8 kcal/mol (0.99 eV) for Cd22+, and 26.4 kcal/mol (1.14 eV) for Hg22+. For comparison and benchmarking purposes, the case of N22+ is considered as a texbook example of metastability. At the equilibrium geometries, LDMs, which are used here as an electronic fingerprinting tool, discriminate and group together Group 12 M22+ from its isoelectronic Group 11 M2. While “classical” bonding indices are inconclusive in establishing regions of metastability in the bonding, it is shown that the one‐electron Bohm quantum potential is promising in this regard.

[1]  C. F. Matta,et al.  The localization-delocalization matrix and the electron-density-weighted connectivity matrix of a finite graphene nanoribbon reconstructed from kernel fragments. , 2014, The journal of physical chemistry. A.

[2]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[3]  A.M.K. Müller,et al.  Explicit approximate relation between reduced two- and one-particle density matrices , 1984 .

[4]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[5]  P. Ayers,et al.  Aromaticity of rings-in-molecules (RIMs) from electron localization–delocalization matrices (LDMs) , 2015 .

[6]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[7]  P. Ayers,et al.  Electron localization-delocalization matrices in the prediction of pKa's and UV-wavelengths of maximum absorbance of p-benzoic acids and the definition of super-atoms in molecules , 2014 .

[8]  H. Raubenheimer,et al.  Borromean sheets assembled by self-supporting argentophilic interactions. , 2005, Chemical communications.

[9]  H. Schaefer,et al.  Predicting molecules--more realism, please! , 2008, Angewandte Chemie.

[10]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[11]  I. Hamilton,et al.  Relativistic-consistent electron densities of the coinage metal clusters M2, M4, M4(2-), and M4Na2 (M = Cu, Ag, Au): a QTAIM study. , 2011, The journal of physical chemistry. A.

[12]  Ab initio study of the change from η5-to η1-coordination in group 12 dimetallocenes MM'(C5H5)2 with M, M' = Zn, Cd, Hg , 2007 .

[13]  Agustín Galindo,et al.  Direct bonds between metal atoms: Zn, Cd, and Hg compounds with metal-metal bonds. , 2008, Angewandte Chemie.

[14]  Leiming Wang,et al.  Structural Evolution of Core-Shell Gold Nanoclusters: Aun- (n = 42-50). , 2016, ACS nano.

[15]  I. Hamilton,et al.  Valence shell structures in the distributions of the Laplacian of the electron density and the one-electron potential for diatomic molecules , 1998 .

[16]  P. Ayers,et al.  AIMLDM: A program to generate and analyze electron localization–delocalization matrices (LDMs) , 2015 .

[17]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[18]  M. Filatov,et al.  No-pair bonding in coinage metal dimers. , 2008, The journal of physical chemistry. A.

[19]  A. Savin,et al.  On the bonding of small group 12 clusters , 1999 .

[20]  J. Sánchez-Marín,et al.  Coupled-Cluster study of ‘no-pair’ bonding in the tetrahedral Cu4 cluster , 2011 .

[21]  E. Francisco,et al.  A Molecular Energy Decomposition Scheme for Atoms in Molecules. , 2006, Journal of chemical theory and computation.

[22]  Qun Zeng,et al.  First-principles study of electronic structures of hexa- and dodecanuclear silver clusters coordinated with organic ligands , 2011 .

[23]  S. García‐Granda,et al.  Experimental and theoretical characterization of the Zn—Zn bond in [Zn2(η5-C5Me5)2] , 2007 .

[24]  P. J. Durrant,et al.  Introduction to advanced inorganic chemistry , 1970 .

[25]  E. Francisco,et al.  Interacting Quantum Atoms:  A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. , 2005, Journal of chemical theory and computation.

[26]  Chérif F. Matta,et al.  The Quantum theory of atoms in molecules : from solid state to DNA and drug design , 2007 .

[27]  F. Cortés‐Guzmán,et al.  Laplacian of the Hamiltonian Kinetic Energy Density as an Indicator of Binding and Weak Interactions. , 2020, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[29]  Vladimír Lukes,et al.  On relativistic effects in ground state potential curves of Zn2, Cd2, and Hg2 dimers. A CCSD(T) study , 2009, J. Comput. Chem..

[30]  I. Krossing,et al.  Structural characterization of a base-stabilized [Zn2]2+ cation. , 2009, Angewandte Chemie.

[31]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[32]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[33]  M. Vincent,et al.  Revitalizing the concept of bond order through delocalization measures in real space , 2018, Chemical science.

[34]  L. Norrby,et al.  Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? , 1991 .

[35]  C. F. Matta,et al.  Quantum Crystallography: Current Developments and Future Perspectives. , 2018, Chemistry.

[36]  Á. M. Pendás,et al.  Binding energies of first row diatomics in the light of the interacting quantum atoms approach. , 2006, The journal of physical chemistry. A.

[37]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[38]  Henry P. Stapp,et al.  The Undivided Universe: An ontological interpretation of Quantum Theory , 1994 .

[39]  M. Kohout On the Relationship between the One-Electron and Bohm's Quantum Potential , 2002 .

[40]  I. Hamilton,et al.  Chemical bonding in groups 10, 11, and 12 transition metal homodimers — An electron density study , 2013 .

[41]  M. Nascimento,et al.  Energy partitioning for generalized product functions: the interference contribution to the energy of generalized valence bond and spin coupled wave functions. , 2009, The Journal of chemical physics.

[42]  L. Massa,et al.  Exploiting the full quantum crystallography , 2018, Canadian Journal of Chemistry.

[43]  G. Eickerling,et al.  Topology of the electron density of d0 transition metal compounds at subatomic resolution. , 2013, The journal of physical chemistry. A.

[44]  Chérif F. Matta,et al.  Modeling Biophysical and Biological Properties From the Characteristics of the Molecular Electron Density, Electron Localization and Delocalization Matrices, and the Electrostatic Potential , 2014, J. Comput. Chem..

[45]  Y. Kawazoe,et al.  The electronic structure of the dizincocene core , 2006 .

[46]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[47]  T. Matsuo,et al.  Observation of doubly charged mercury cluster ions Hgn2+, n=1-10 using secondary ion mass spectrometry , 1997 .

[48]  Michael Dolg,et al.  Relativistic pseudopotentials: their development and scope of applications. , 2012, Chemical reviews.

[49]  J. A. Alonso,et al.  Observation of Zr2(2+), Cd2(2+), Hf2(2+), W2(2+), and Pt2(2+) in the gas phase. , 2009, The Journal of chemical physics.

[50]  Pekka Pyykkö,et al.  Matrix Infrared Spectroscopic and ab Initio Studies of ZnH2, CdH2, and Related Metal Hydride Species , 1995 .

[51]  M. Nascimento,et al.  On the metastability of doubly charged homonuclear diatomics. , 2017, Physical chemistry chemical physics : PCCP.

[52]  J. A. Alonso,et al.  The diatomic dication CuZn2+ in the gas phase. , 2011, The Journal of chemical physics.

[53]  P. Bagus,et al.  Electronic structure of mercury oligomers and exciplexes: models for long-range/multicenter bonding in phosphorescent transition-metal compounds. , 2005, The journal of physical chemistry. A.

[54]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[55]  Are the Bader Laplacian and the Bohm quantum potential equivalent , 1997, physics/9704029.

[56]  Philip Coppens,et al.  X-ray charge densities and chemical bonding , 1997 .

[57]  H. Lee,et al.  Argentophilic interaction and anionic control of supramolecular structures in simple silver pyridine complexes , 2007 .

[58]  S. Harder,et al.  Comparison of hydrogen elimination from molecular zinc and magnesium hydride clusters. , 2014, Chemistry.

[59]  M. Dolg Improved relativistic energy-consistent pseudopotentials for 3d-transition metals , 2005 .

[60]  Vladimir G. Tsirelson,et al.  Electron density and bonding in crystals : principles, theory, and X-ray diffraction experiments in solid state physics and chemistry , 1996 .