Visual mental imagery induces retinotopically organized activation of early visual areas.

There is a long-standing debate as to whether visual mental imagery relies entirely on symbolic (language-like) representations or also relies on depictive (picture-like) representations. We sought to discover whether visual mental imagery could evoke cortical activity with precise visual field topography (retinotopy). Participants received three conditions: the perception condition consisted of a standard retinotopic mapping procedure, where two flickering checkerboard wedges rotated around a central fixation point. The imagery and attention conditions consisted of the same stimulus, but only the outer arcs of the wedges were visible. During imagery, participants mentally reproduced the stimulus wedges, using the stimulus arcs as a guide. The attention condition required either distributed attention or focused attention to where the stimulus wedges would have been. Event-related analysis revealed that the imagery (greater than either form of attention) retinotopic maps were similar to the perception maps. Moreover, blocked analysis revealed similar perception and imagery effects in human motion processing region MT+. These results support the depictive view of visual mental imagery.

[1]  Tatsuji Inouye,et al.  Die Sehstörungen bei Schußverletzungen der kortikalen Sehsphäre : nach Beobachtungen an Verwundeten der letzten japanischen Kriege , 1909 .

[2]  G. Holmes,et al.  Disturbances of Vision from Cerebral Lesions, with Special Reference to the Cortical Representation of the Macula , 1916, Proceedings of the Royal Society of Medicine.

[3]  W. T. Lister,et al.  Disturbances of Vision from Cerebral Lesions, with Special Reference to the Cortical Representation of the Macula , 1916, Proceedings of the Royal Society of Medicine.

[4]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[5]  G. Holmes Ferrier Lecture - The organization of the visual cortex in man , 1945, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[6]  Zenon W. Pylyshyn,et al.  What the Mind’s Eye Tells the Mind’s Brain: A Critique of Mental Imagery , 1973 .

[7]  J. Horton,et al.  Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. , 1991, Brain : a journal of neurology.

[8]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[9]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  A Reeves,et al.  How visual imagery interferes with vision. , 1992, Psychological review.

[11]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[12]  D Le Bihan,et al.  Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Kosslyn,et al.  Visual Mental Imagery Activates Topographically Organized Visual Cortex: PET Investigations , 1993, Journal of Cognitive Neuroscience.

[14]  S. Kosslyn Image and Brain: The Resolution of the Imagery Debate , 1994, Journal of Cognitive Neuroscience.

[15]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[16]  S. Kosslyn,et al.  Topographical representations of mental images in primary visual cortex , 1995, Nature.

[17]  S. Kosslyn,et al.  Individual Differences in Cerebral Blood Flow in Area 17 Predict the Time to Evaluate Visualized Letters , 1996, Journal of Cognitive Neuroscience.

[18]  M. Denis,et al.  Functional Anatomy of Spatial Mental Imagery Generated from Verbal Instructions , 1996, The Journal of Neuroscience.

[19]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Kosslyn,et al.  Neural Systems Shared by Visual Imagery and Visual Perception: A Positron Emission Tomography Study , 1997, NeuroImage.

[21]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[22]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[23]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[24]  A. Dale,et al.  From retinotopy to recognition: fMRI in human visual cortex , 1998, Trends in Cognitive Sciences.

[25]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[26]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[27]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[28]  S. Kosslyn,et al.  The role of area 17 in visual imagery: convergent evidence from PET and rTMS. , 1999, Science.

[29]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[30]  G. Orban,et al.  Attention to Speed of Motion, Speed Discrimination, and Task Difficulty: An fMRI Study , 2000, NeuroImage.

[31]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[32]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[33]  S. Kosslyn,et al.  Neural foundations of imagery , 2001, Nature Reviews Neuroscience.

[34]  G. Mangun,et al.  Dissociating top-down attentional control from selective perception and action , 2001, Neuropsychologia.

[35]  Thom Carney,et al.  Electrophysiological estimate of human cortical magnification , 2001, Clinical Neurophysiology.

[36]  Z. Pylyshyn Mental imagery: In search of a theory , 2002, Behavioral and Brain Sciences.

[37]  Michael Erb,et al.  Object-selective responses in the human motion area MT/MST , 2002, Nature Neuroscience.

[38]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[39]  Lauren R. Moo,et al.  Large-scale cortical displacement of a human retinotopic map , 2002, Neuroreport.

[40]  Leslie G. Ungerleider,et al.  Visual Imagery of Famous Faces: Effects of Memory and Attention Revealed by fMRI , 2002, NeuroImage.

[41]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[42]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[43]  M. Corbetta,et al.  Neural Systems for Visual Orienting and Their Relationships to Spatial Working Memory , 2002, Journal of Cognitive Neuroscience.

[44]  Steven Yantis,et al.  Efficient acquisition of human retinotopic maps , 2003, Human brain mapping.

[45]  S. Kosslyn,et al.  When is early visual cortex activated during visual mental imagery? , 2003, Psychological bulletin.

[46]  S. Yantis,et al.  Cortical mechanisms of feature-based attentional control. , 2003, Cerebral cortex.

[47]  Jens Schwarzbach,et al.  Attentional inhibition of visual processing in human striate and extrastriate cortex , 2003, NeuroImage.

[48]  Scott D Slotnick,et al.  Retinotopic mapping reveals extrastriate cortical basis of homonymous quadrantanopia , 2003, Neuroreport.

[49]  Stephen M. Kosslyn,et al.  Brain rCBF and performance in visual imagery tasks: Common and distinct processes , 2004 .

[50]  David Caplan,et al.  Cognitive conjunction and cognitive functions , 2004, NeuroImage.

[51]  Guillaume Flandin,et al.  Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. , 2004, Brain research. Cognitive brain research.

[52]  S. Kosslyn,et al.  Brain areas underlying visual mental imagery and visual perception: an fMRI study. , 2004, Brain research. Cognitive brain research.

[53]  D. Schacter,et al.  A sensory signature that distinguishes true from false memories , 2004, Nature Neuroscience.