Computing and Combinatorics: 25th International Conference, COCOON 2019, Xi'an, China, July 29–31, 2019, Proceedings

Given an undirected graph, its arboricity is the minimum number of edge disjoint forests, its edge set can be partitioned into. We develop the first fully dynamic algorithms to determine the arboricity of a graph under edge insertions and deletions. While our insertion algorithm is based on known static algorithms to determine the arboricity, our deletion algorithm is, to the best of our knowledge, new. Our algorithms take Õ(m) time (Õ notation ignores logarithmic factors.) to insert or delete an edge where m is the number of edges in the graph while the best static algorithm to compute arboricity takes O(m log(n/m)) time [7]. We complement our upper bound with a lower bound result of amortized Ω(log n) for any algorithm that maintains a forest decomposition of size arboricity of the graph under edge insertions and deletions.

[1]  Sandip Das,et al.  On Chromatic Number of Colored Mixed Graphs , 2017, CALDAM.

[2]  J. Nesetril,et al.  Colorings and Homomorphisms of Minor Closed Classes , 2003 .

[3]  Gill Barequet,et al.  Counting d-Dimensional Polycubes and nonrectangular Planar polyominoes , 2009, Int. J. Comput. Geom. Appl..

[4]  D. Klarner Cell Growth Problems , 1967, Canadian Journal of Mathematics.

[5]  D. Hugh Redelmeier,et al.  Counting polyominoes: Yet another attack , 1981, Discret. Math..

[6]  Glenn G. Chappell,et al.  Coloring with no 2-Colored P4's , 2004, Electron. J. Comb..

[7]  D. Klarner,et al.  A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[8]  Oleg V. Borodin On acyclic colorings of planar graphs , 1979, Discret. Math..

[9]  E. J. COCKAYNE,et al.  Information Dissemination in Trees , 1981, SIAM J. Comput..

[10]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[11]  Maryvonne Mahéo,et al.  Some minimum broadcast graphs , 1994, Discret. Appl. Math..

[12]  Rajeev Motwani,et al.  Online Scheduling with Lookahead: Multipass Assembly Lines , 1998, INFORMS J. Comput..

[13]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[14]  Neal Madras,et al.  A pattern theorem for lattice clusters , 1999 .

[15]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[16]  Gill Barequet,et al.  An Improved Lower Bound on the Growth Constant of Polyiamonds , 2017, COCOON.

[17]  Marek Chrobak,et al.  A φ-Competitive Algorithm for Scheduling Packets with Deadlines , 2019, SODA.

[18]  Grzegorz Guspiel,et al.  Universal targets for homomorphisms of edge-colored graphs , 2017, J. Comb. Theory, Ser. B.

[19]  Kyung-Yong Chwa,et al.  Recursive circulant: a new topology for multicomputer networks (extended abstract) , 1994, Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN).

[20]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Jean-François Saclé Lower bounds for the size in four families of minimum broadcast graphs , 1996, Discret. Math..

[22]  Arthur L. Liestman,et al.  Upper bounds on the broadcast function using minimum dominating sets , 2012, Discret. Math..

[23]  S. Hakimi On the degrees of the vertices of a directed graph , 1965 .

[24]  Bin Shao On k-broadcasting in graphs , 2006 .

[25]  Kirill Kogan,et al.  Single and Multiple Buffer Processing , 2016, Encyclopedia of Algorithms.

[26]  Zhiyuan Li,et al.  A new construction of broadcast graphs , 2020, Discret. Appl. Math..

[27]  N. Alon,et al.  Homomorphisms of Edge-Colored Graphs and Coxeter Groups , 1998 .

[28]  Günter Rote,et al.  Λ > 4: an Improved Lower Bound on the Growth Constant of Polyominoes , 2016, Commun. ACM.

[29]  André Raspaud,et al.  Colored Homomorphisms of Colored Mixed Graphs , 2000, J. Comb. Theory, Ser. B.

[30]  Arthur L. Liestman,et al.  More Broadcast Graphs , 1999, Discret. Appl. Math..

[31]  Roger Labahn A minimum broadcast graph on 63 vertices , 1994, Discret. Appl. Math..

[32]  Walter Knödel,et al.  New gossips and telephones , 1975, Discret. Math..

[33]  Zhiyuan Li,et al.  Broadcast Graphs Using New Dimensional Broadcast Schemes for Knödel Graphs , 2017, CALDAM.