Accessing alignments of ontologies via IoT based on SKOS data model

Many ontologies are provided to representing semantic sensors data. However, heterogeneity exists in different sensors which makes some service operators of Internet of Thing (IoT) difficult (such as such as semantic inferring, non-linear inverted index establishing, service composing). There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies, but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments. Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology, and then combines the alignments with the SKOS model to construct the integration sensor ontology, which can be accessed via the IoT. The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service, and the accuracy of our prototype, in average, is higher than others over the four real ontologies.

[1]  Enrico Motta,et al.  DSSim-ontology Mapping with Uncertainty , 2006, Ontology Matching.

[2]  Sharifullah Khan,et al.  Semantic matching in hierarchical ontologies , 2014, J. King Saud Univ. Comput. Inf. Sci..

[3]  Nicola Fanizzi,et al.  A dissimilarity measure for ALC concept descriptions , 2006, SAC '06.

[4]  Nigel Shadbolt,et al.  Capturing, Representing and Operationalising Semantic Integration (CROSI) project - final report , 2005 .

[5]  Ralf Küsters,et al.  Approximating ALCN-Concept Descriptions , 2002, Description Logics.

[6]  Erhard Rahm,et al.  A Clustering-Based Approach for Large-Scale Ontology Matching , 2011, ADBIS.

[7]  Chi Harold Liu,et al.  Sensor Search Techniques for Sensing as a Service Architecture for the Internet of Things , 2013, IEEE Sensors Journal.

[8]  York Sure-Vetter,et al.  Ontology Mapping - An Integrated Approach , 2004, ESWS.

[9]  Yuzhong Qu,et al.  Constructing virtual documents for ontology matching , 2006, WWW '06.

[10]  Xinmin Wang,et al.  A semantic similarity measure based on information distance for ontology alignment , 2014, Inf. Sci..

[11]  Wolfgang Kellerer,et al.  The sensor internet at work: Locating everyday items using mobile phones , 2008, Pervasive Mob. Comput..

[12]  W. Nutt,et al.  Subsumption algorithms for concept languages , 1990 .

[13]  Sean Bechhofer,et al.  SKOS Simple Knowledge Organization System Reference , 2009 .

[14]  Mahboobeh Houshmand,et al.  Similarity aggregation in ontology matching based on reliability maximization , 2011, 2011 19th Iranian Conference on Electrical Engineering.

[15]  Suman Nath,et al.  SenseWeb: An Infrastructure for Shared Sensing , 2007, IEEE MultiMedia.

[16]  Jérôme Euzenat,et al.  Ten Challenges for Ontology Matching , 2008, OTM Conferences.

[17]  Wei Gao,et al.  Ranking based ontology learning algorithm for similarity measuring and ontology mapping using representation theory , 2016 .

[18]  Rung Ching Chen,et al.  Merging domain ontologies based on the WordNet system and Fuzzy Formal Concept Analysis techniques , 2011, Appl. Soft Comput..

[19]  Paulo Maio,et al.  An extensible argument-based ontology matching negotiation approach , 2014, Sci. Comput. Program..

[20]  Freek D. van der Meer,et al.  A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps , 2011, Comput. Geosci..

[21]  Giovanni Acampora,et al.  Enhancing ontology alignment through a memetic aggregation of similarity measures , 2013, Inf. Sci..

[22]  Renée J. Miller,et al.  Leveraging data and structure in ontology integration , 2007, SIGMOD '07.

[23]  Jérôme David,et al.  Matching directories and OWL ontologies with AROMA , 2006, CIKM '06.

[24]  Bijan Parsia,et al.  Description Logic Reasoning for Dynamic ABoxes , 2006, Description Logics.

[25]  Domenico Talia,et al.  UFOme: An ontology mapping system with strategy prediction capabilities , 2010, Data Knowl. Eng..

[26]  Martin Haspelmath,et al.  The indeterminacy of word segmentation and the nature of morphology and syntax , 2011 .

[27]  Fausto Giunchiglia,et al.  Semantic Matching: Algorithms and Implementation , 2007, J. Data Semant..

[28]  Brigitte Kerhervé,et al.  A Model-Driven Approach to SKOS Implementation , 2010, 2010 Fifth International Conference on Internet and Web Applications and Services.

[29]  Anurag Agarwal,et al.  The Internet of Things—A survey of topics and trends , 2014, Information Systems Frontiers.

[30]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[31]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[32]  Xingsi Xue,et al.  Optimizing ontology alignment through Memetic Algorithm based on Partial Reference Alignment , 2014, Expert Syst. Appl..

[33]  Myung Ho Kim,et al.  Instance-Based Ontology Matching with Rough Set Features Selection , 2013, 2013 International Conference on IT Convergence and Security (ICITCS).

[34]  Jeff Z. Pan,et al.  KOSIMap: Use of Description Logic Reasoning to Align Heterogeneous Ontologies , 2010, Description Logics.

[35]  Mansur R. Kabuka,et al.  Ontology matching with semantic verification , 2009, J. Web Semant..

[36]  Muthoni Masinde,et al.  Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting , 2015, Middleware Doctoral Symposium.

[37]  Mianxiong Dong,et al.  Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes , 2017, Future Gener. Comput. Syst..

[38]  Zizette Boufaïda,et al.  A description logics formalization for the ontology matching , 2011, WCIT.

[39]  Hyoil Han,et al.  A survey on ontology mapping , 2006, SGMD.

[40]  Peigang Xu,et al.  Alignment results of SOBOM for OAEI 2010 , 2009, OM.

[41]  Alejandra Cechich,et al.  Building a global normalized ontology for integrating geographic data sources , 2011, Comput. Geosci..