An Implementation of the Logarithmic Hamiltonian Method for Artificial Satellite Orbit Determination
暂无分享,去创建一个
[1] Hiroshi Nakai,et al. Symplectic integrators and their application to dynamical astronomy , 1990 .
[2] Robert I. McLachlan,et al. Composition methods in the presence of small parameters , 1995 .
[3] R. Gomes,et al. A mapping for nonconservative systems , 1996 .
[4] S. Tremaine,et al. A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems , 1999, astro-ph/9906322.
[5] S. Mikkola. Practical Symplectic Methods with Time Transformation for the Few-Body Problem , 1997 .
[6] Seppo Mikkola. Efficient Symplectic Integration of Satellite Orbits , 1999 .
[7] S. Mikkola. Non-canonical perturbations in symplectic integration , 1998 .
[8] J. Marsden,et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .
[9] Pseudo-High-Order Symplectic Integrators , 1999, astro-ph/9910263.
[10] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[11] Phil Palmer,et al. A Symplectic Orbital Estimator for Direct Tracking on Satellites , 2000 .
[12] Symplectic Tangent map for Planetary Motions , 1999 .
[13] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[14] Pierre-Vincent Koseleff,et al. Relations Among Lie Formal Series and Construction of Symplectic Integrators , 1993, AAECC.
[15] J. Wisdom,et al. Symplectic maps for the N-body problem. , 1991 .
[16] Kevin P. Rauch,et al. Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions , 1999 .
[17] S. Mikkola,et al. Algorithmic regularization of the few‐body problem , 1999 .
[18] S. Mikkola,et al. The Stability of Quasi Satellites in the Outer Solar System , 2000 .
[19] S. Mikkola,et al. Explicit Symplectic Algorithms For Time‐Transformed Hamiltonians , 1999 .