Stochastic models of neural networks involved in learning and memory
暂无分享,去创建一个
[1] On Maximum Likelihood Estimation in Randomly Stopped Diffusion-Type Processes , 1983 .
[2] H. L. Bryant,et al. Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. , 1973, Journal of neurophysiology.
[3] P. Brémaud. Point processes and queues, martingale dynamics , 1983 .
[4] Hung T. Nguyen,et al. Identification of Nonstationary Diffusion Model by the Method of Sieves , 1982 .
[5] M. K. Habib,et al. Stochastic models and estimation of subthreshold neuronal activity , 1986 .
[6] P. Bremaud. ESTIMATION DE L'ETAT D'UNE FILE D'ATTENTE ET DU TEMPS DE PANNE D'UNE MACHINE PAR , 1975 .
[7] Donald L. Snyder,et al. Random point processes , 1975 .
[8] J. Jacod. Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales , 1975 .
[9] P. Sen. Some Invariance Principles Relating to Jackknifing and Their Role in Sequential Analysis , 1977 .
[10] George L. Gerstein,et al. Design of a laboratory for multineuron studies , 1983, IEEE Transactions on Systems, Man, and Cybernetics.
[11] R. Tapia,et al. Nonparametric Probability Density Estimation , 1978 .
[12] J. B. Walsh. A STOCHASTIC MODEL OF NEURAL RESPONSE , 1981 .
[13] A. Shiryayev,et al. A Functional Central Limit Theorem for Semimartingales , 1981 .
[14] B. Øksendal. Stochastic Differential Equations , 1985 .
[15] Pranab Kumar Sen,et al. Non-stationary stochastic point-process models in neurophysiology with applications to learning , 1984 .
[16] Pranab Kumar Sen,et al. On Some Convergence Properties of UStatistics , 1960 .
[17] S. Geman,et al. Nonparametric Maximum Likelihood Estimation by the Method of Sieves , 1982 .
[18] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[19] William A. Brock,et al. Stochastic methods in economics and finance , 1982 .
[20] I. Gihman,et al. Stochastic Differential Equations , 1975 .
[21] Ishwar V. Basawa. Statistical inference for stochastic processes , 1980 .
[22] Michel Métivier,et al. Semimartingales: A course on stochastic processes , 1986 .
[23] B. Grigelionis,et al. On the Convergence of Sums of Random Step Processes to a Poisson Process , 1963 .
[24] H. Akaike,et al. On Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self-exciting Point Processes , 1982 .
[25] Petr Lánský,et al. Inference for the diffusion models of neuronal activity , 1983 .
[26] P. Meyer. Un cours sur les intégrales stochastiques (exposés 1 à 6) , 1976 .
[27] P. Varaiya,et al. Martingales on Jump Processes. I: Representation Results , 1975 .
[28] R. Wolpert,et al. Weak convergence of stochastic neuronal models , 1985 .
[29] G. Kallianpur. Stochastic differential equations and diffusion processes , 1981 .
[30] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[31] Moshe Zakai,et al. Martingales and stochastic integrals for processes with a multi-dimensional parameter , 1974 .
[32] H. Tuckwell,et al. Accuracy of neuronal interspike times calculated from a diffusion approximation. , 1980, Journal of theoretical biology.
[33] Alʹbert Nikolaevich Shiri︠a︡ev,et al. Statistics of random processes , 1977 .
[34] K. Tanaka,et al. Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.
[35] D H Johnson,et al. The transmission of signals by auditory-nerve fiber discharge patterns. , 1983, The Journal of the Acoustical Society of America.
[36] Robert L. Wolpert,et al. Infinite dimensional stochastic differential equation models for spatially distributed neurons , 1984 .
[37] Wilfrid Rall,et al. Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .