Stochastic models of neural networks involved in learning and memory

[1]  On Maximum Likelihood Estimation in Randomly Stopped Diffusion-Type Processes , 1983 .

[2]  H. L. Bryant,et al.  Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. , 1973, Journal of neurophysiology.

[3]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[4]  Hung T. Nguyen,et al.  Identification of Nonstationary Diffusion Model by the Method of Sieves , 1982 .

[5]  M. K. Habib,et al.  Stochastic models and estimation of subthreshold neuronal activity , 1986 .

[6]  P. Bremaud ESTIMATION DE L'ETAT D'UNE FILE D'ATTENTE ET DU TEMPS DE PANNE D'UNE MACHINE PAR , 1975 .

[7]  Donald L. Snyder,et al.  Random point processes , 1975 .

[8]  J. Jacod Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales , 1975 .

[9]  P. Sen Some Invariance Principles Relating to Jackknifing and Their Role in Sequential Analysis , 1977 .

[10]  George L. Gerstein,et al.  Design of a laboratory for multineuron studies , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  R. Tapia,et al.  Nonparametric Probability Density Estimation , 1978 .

[12]  J. B. Walsh A STOCHASTIC MODEL OF NEURAL RESPONSE , 1981 .

[13]  A. Shiryayev,et al.  A Functional Central Limit Theorem for Semimartingales , 1981 .

[14]  B. Øksendal Stochastic Differential Equations , 1985 .

[15]  Pranab Kumar Sen,et al.  Non-stationary stochastic point-process models in neurophysiology with applications to learning , 1984 .

[16]  Pranab Kumar Sen,et al.  On Some Convergence Properties of UStatistics , 1960 .

[17]  S. Geman,et al.  Nonparametric Maximum Likelihood Estimation by the Method of Sieves , 1982 .

[18]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[19]  William A. Brock,et al.  Stochastic methods in economics and finance , 1982 .

[20]  I. Gihman,et al.  Stochastic Differential Equations , 1975 .

[21]  Ishwar V. Basawa Statistical inference for stochastic processes , 1980 .

[22]  Michel Métivier,et al.  Semimartingales: A course on stochastic processes , 1986 .

[23]  B. Grigelionis,et al.  On the Convergence of Sums of Random Step Processes to a Poisson Process , 1963 .

[24]  H. Akaike,et al.  On Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self-exciting Point Processes , 1982 .

[25]  Petr Lánský,et al.  Inference for the diffusion models of neuronal activity , 1983 .

[26]  P. Meyer Un cours sur les intégrales stochastiques (exposés 1 à 6) , 1976 .

[27]  P. Varaiya,et al.  Martingales on Jump Processes. I: Representation Results , 1975 .

[28]  R. Wolpert,et al.  Weak convergence of stochastic neuronal models , 1985 .

[29]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[30]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[31]  Moshe Zakai,et al.  Martingales and stochastic integrals for processes with a multi-dimensional parameter , 1974 .

[32]  H. Tuckwell,et al.  Accuracy of neuronal interspike times calculated from a diffusion approximation. , 1980, Journal of theoretical biology.

[33]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[34]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[35]  D H Johnson,et al.  The transmission of signals by auditory-nerve fiber discharge patterns. , 1983, The Journal of the Acoustical Society of America.

[36]  Robert L. Wolpert,et al.  Infinite dimensional stochastic differential equation models for spatially distributed neurons , 1984 .

[37]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .