Sparsest Continuous Piecewise-Linear Representation of Data

We study the problem of interpolating one-dimensional data with total variation regularization on the second derivative, which is known to promote piecewise-linear solutions with few knots. In a first scenario, we consider the problem of exact interpolation. We thoroughly describe the form of the solutions of the underlying constrained optimization problem, including the sparsest piecewise-linear solutions, i.e., with the minimum number of knots. Next, we relax the exact interpolation requirement, and consider a penalized optimization problem with a strictly convex data-fidelity cost function. We show that the underlying penalized problem can be reformulated as a constrained problem, and thus that all our previous results still apply. We propose a simple and fast two-step algorithm to reach a sparsest solution of this constrained problem.

[1]  Nathan Srebro,et al.  A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case , 2019, ICLR.

[2]  Richard Baraniuk,et al.  Mad Max: Affine Spline Insights Into Deep Learning , 2018, Proceedings of the IEEE.

[3]  G. Petrova,et al.  Nonlinear Approximation and (Deep) ReLU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ReLU}$$\end{document} , 2019, Constructive Approximation.

[4]  Robert D. Nowak,et al.  Neural Networks, Ridge Splines, and TV Regularization in the Radon Domain , 2020, ArXiv.

[5]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[6]  A. Pinkus On smoothest interpolants , 1988 .

[7]  M. Unser,et al.  Native Banach spaces for splines and variational inverse problems , 2019, 1904.10818.

[8]  Michael Unser,et al.  Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization , 2016, SIAM Rev..

[9]  Didier Henrion,et al.  Exact Solutions to Super Resolution on Semi-Algebraic Domains in Higher Dimensions , 2015, IEEE Transactions on Information Theory.

[10]  P. Weiss,et al.  Exact solutions of infinite dimensional total-variation regularized problems , 2017, Information and Inference: A Journal of the IMA.

[11]  G. Peyré,et al.  Sparse regularization on thin grids I: the Lasso , 2017 .

[12]  Genady Grabarnik,et al.  Sparse Modeling: Theory, Algorithms, and Applications , 2014 .

[13]  Andrew R. Teel,et al.  ESAIM: Control, Optimisation and Calculus of Variations , 2022 .

[14]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.

[15]  Gabriel Peyré,et al.  Support Recovery for Sparse Super-Resolution of Positive Measures , 2017 .

[16]  Helmut Bölcskei,et al.  Optimal Approximation with Sparsely Connected Deep Neural Networks , 2017, SIAM J. Math. Data Sci..

[17]  Robert D. Nowak,et al.  Minimum "Norm" Neural Networks are Splines , 2019, ArXiv.

[18]  Yuejie Chi,et al.  Harnessing Sparsity Over the Continuum: Atomic norm minimization for superresolution , 2019, IEEE Signal Processing Magazine.

[19]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[20]  Jean-Baptiste Courbot,et al.  Sparse analysis for mesoscale convective systems tracking , 2020, Signal Process. Image Commun..

[21]  Michael Unser,et al.  Continuous-Domain Solutions of Linear Inverse Problems With Tikhonov Versus Generalized TV Regularization , 2018, IEEE Transactions on Signal Processing.

[22]  D. Donoho Superresolution via sparsity constraints , 1992 .

[23]  Ben Adcock,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016, Found. Comput. Math..

[24]  Gabriel Peyré,et al.  MultiDimensional Sparse Super-Resolution , 2017, SIAM J. Math. Anal..

[25]  Benjamin Recht,et al.  The alternating descent conditional gradient method for sparse inverse problems , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[26]  Yonina C. Eldar,et al.  Sampling and Super Resolution of Sparse Signals Beyond the Fourier Domain , 2019, IEEE Transactions on Signal Processing.

[27]  Pierre Weiss,et al.  On the linear convergence rates of exchange and continuous methods for total variation minimization , 2019, Mathematical Programming.

[28]  Emmanuel Soubies,et al.  The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy , 2018, Inverse Problems.

[29]  Philipp Petersen,et al.  Optimal approximation of piecewise smooth functions using deep ReLU neural networks , 2017, Neural Networks.

[30]  G. Peyré,et al.  Sparse spikes super-resolution on thin grids II: the continuous basis pursuit , 2017 .

[31]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[32]  M. Kreĭn,et al.  The Markov moment problem and extremal problems : ideas and problems of P.L. Čebyšev and A.A. Markov and their further development , 1977 .

[33]  Carlos Fernandez-Granda,et al.  Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[34]  Gabriel Peyré,et al.  Support Localization and the Fisher Metric for off-the-grid Sparse Regularization , 2018, AISTATS.

[35]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[36]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[37]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[38]  Matthieu Simeoni Sparse Spline Approximation on the Hypersphere by Generalised Total Variation Basis Pursuit , 2019 .

[39]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[40]  Michael Unser,et al.  Pocket guide to solve inverse problems with GlobalBioIm , 2018, Inverse Problems.

[41]  Gabriel Peyré,et al.  A Low-Rank Approach to Off-The-Grid Sparse Deconvolution , 2017, ArXiv.

[42]  Benjamin Recht,et al.  Superresolution without separation , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[43]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[44]  S. Geer,et al.  Locally adaptive regression splines , 1997 .

[45]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[46]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[47]  Pierre Baldi,et al.  Learning Activation Functions to Improve Deep Neural Networks , 2014, ICLR.

[48]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[49]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[50]  Nathan Srebro,et al.  How do infinite width bounded norm networks look in function space? , 2019, COLT.

[51]  Razvan Pascanu,et al.  On the Number of Linear Regions of Deep Neural Networks , 2014, NIPS.

[52]  Yonina C. Eldar Compressed Sensing of Analog Signals , 2008, ArXiv.

[53]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[54]  Michael Unser,et al.  Hybrid-Spline Dictionaries for Continuous-Domain Inverse Problems , 2019, IEEE Transactions on Signal Processing.

[55]  Joan Bruna,et al.  On Sparsity in Overparametrised Shallow ReLU Networks , 2020, ArXiv.

[56]  Vincent Duval,et al.  An Epigraphical Approach to the Representer Theorem , 2019, 1912.13224.

[57]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[58]  Charles Soussen,et al.  OMP and Continuous Dictionaries: Is k-step Recovery Possible? , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[59]  Vincent Duval A characterization of the Non-Degenerate Source Condition in super-resolution , 2019, Information and Inference: A Journal of the IMA.

[60]  Razvan Pascanu,et al.  On the number of response regions of deep feed forward networks with piece-wise linear activations , 2013, 1312.6098.

[61]  L. Schwartz Théorie des distributions , 1966 .

[62]  Carl de Boor,et al.  On “best” interpolation☆ , 1976 .

[63]  Michael Unser,et al.  A representer theorem for deep neural networks , 2018, J. Mach. Learn. Res..

[64]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[66]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[67]  Eero P. Simoncelli,et al.  Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit , 2011, IEEE Transactions on Signal Processing.

[68]  Rémi Gribonval,et al.  Approximation Spaces of Deep Neural Networks , 2019, Constructive Approximation.

[69]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[70]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[71]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[72]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[73]  Michael Unser,et al.  Deep Neural Networks With Trainable Activations and Controlled Lipschitz Constant , 2020, IEEE Transactions on Signal Processing.

[74]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[75]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[76]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[77]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[78]  Joseph W. Jerome,et al.  Spline solutions to L1 extremal problems in one and several variables , 1975 .

[79]  Michael Unser,et al.  B-Spline-Based Exact Discretization of Continuous-Domain Inverse Problems With Generalized TV Regularization , 2019, IEEE Transactions on Information Theory.

[80]  K. Bredies,et al.  Sparsity of solutions for variational inverse problems with finite-dimensional data , 2018, Calculus of Variations and Partial Differential Equations.

[81]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[82]  K. Bredies,et al.  Inverse problems in spaces of measures , 2013 .

[83]  Dmitry Yarotsky,et al.  Error bounds for approximations with deep ReLU networks , 2016, Neural Networks.

[84]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[85]  Antonin Chambolle,et al.  On Representer Theorems and Convex Regularization , 2018, SIAM J. Optim..

[86]  Razvan Pascanu,et al.  On the number of inference regions of deep feed forward networks with piece-wise linear activations , 2013, ICLR.

[87]  Tomaso Poggio,et al.  Notes on Hierarchical Splines, DCLNs and i-theory , 2015 .

[88]  Michael Unser,et al.  Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems , 2018, IEEE Transactions on Signal Processing.

[89]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[90]  W. Rudin Real and complex analysis , 1968 .

[91]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[92]  G. Wahba Spline models for observational data , 1990 .

[93]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.