Chemical fate prediction for use in geo-referenced environmental exposure assessment

[1]  E. Matthijs,et al.  The fate of detergent surfactants in sewer systems , 1995 .

[2]  R. Larson,et al.  The Environmental Fate and Effects of Detergents , 1987 .

[3]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[4]  Peter Pflanz,et al.  PERFORMANCE OF (ACTIVATED SLUDGE) SECONDARY SEDIMENTATION BASINS , 1969 .

[5]  J Devillers,et al.  European Union System for the Evaluation of Substances (EUSES). Principles and structure. , 1997, Chemosphere.

[6]  P. Vanrolleghem,et al.  Adaptation of the simpletreat chemical fate model to single-sludge biological nutrient removal wastewater treatment plants , 1998 .

[7]  G. Marais,et al.  Processes and Modelling of Nitrification Denitrification Biological Excess Phosphorus Removal Systems – A Review , 1992 .

[8]  E. Matthijs,et al.  Fate of surfactants in activated sludge waste water treatment plants , 1996 .

[9]  D. Washington,et al.  Standard Methods for the Examination of Water and Wastewater , 1971 .

[10]  S Trapp,et al.  Field test of volatilization models , 1995, Environmental science and pollution research international.

[11]  S. Trapp,et al.  Dynamik von Schadstoffen — Umweltmodellierung mit CemoS , 1996 .

[12]  Niels Nyholm,et al.  A regional chemical fate and exposure model suitable for Denmark and its coastal sea , 1996 .

[13]  Peter A. Vanrolleghem,et al.  Non-invasive and continuous monitoring of a pilot-scale trickling filter: Weight, off-gas and hydraulic characterization. , 1999 .

[14]  C. W. Randall,et al.  Effects of temperature and mean cell residence time on biological nutrient removal processes , 1993 .

[15]  B. Eliosov,et al.  Hydrolysis of particulate organics in activated sludge systems , 1995 .

[16]  B. Jørgensen,et al.  Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes , 1993, Applied and environmental microbiology.

[17]  Maurice L. Albertson,et al.  Uniform Water Conveyance Channels in Alluvial Materials , 1960 .

[18]  R. Bowker Phosphorus removal from wastewater , 1990 .

[19]  G. Baughman,et al.  Prediction of Environmental Pollutant Concentration , 1978 .

[20]  A dynamic model for predicting effluent concentrations of organic priority pollutants from an industrial wastewater treatment plant , 1995 .

[21]  Tadataka Yamada,et al.  Textbook of Gastroenterology , 1995 .

[22]  D. Mackay,et al.  Mass transfer coefficient correlations for volatilization of organic solutes from water. , 1983, Environmental science & technology.

[23]  H. D. Stensel,et al.  Aerated Anoxic Biological NdeN Process , 1994 .

[24]  P. Schöberl,et al.  Alkylbenzolsulfonat-(LAS)-monitoring : Teil 1 : pilotsudie an der Kläranlage München II sowie an der Isar zwischen Dietersheim und Grüneck , 1994 .

[25]  C. Lue‐Hing,et al.  CHANGES IN BACTERIAL AEROSOLS WITH HEIGHT ABOVE AERATION TANKS , 1996 .

[26]  W. Triebel,et al.  Lehr- und Handbuch der Abwassertechnik , 1967 .

[27]  Mogens Henze,et al.  HYDROLYSIS OF PARTICULATE SUBSTRATE BY ACTIVATED SLUDGE UNDER AEROBIC, ANOXIC AND ANAEROBIC CONDITIONS , 1991 .

[28]  Mogens Henze,et al.  External carbon source addition as a means to control an activated sludge nutrient removal process , 1994 .

[29]  Development of a Propagation Model to Determine the Spread of Accidental Pollution in Rivers , 1994 .

[30]  D Mackay,et al.  Fugacity analysis and model of organic chemical fate in a sewage treatment plant. , 1995, Environmental science & technology.

[31]  A. Klapwijk Eliminatie van stikstof uit afvalwater door denitrificatie , 1978 .

[32]  H. D. Stensel,et al.  Design and retrofit of wastewater treatment plants for biological nutrient removal , 1992 .

[33]  P. Dold,et al.  General model for biological nutrient removal activated‐sludge systems: model presentation , 1997 .

[34]  D. Mackay,et al.  A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in rivers , 1983 .

[35]  L. Shoemaker,et al.  Better assessment science integrating point and nonpoint sources (BASINS), version 2.0. User`s manual , 1998 .

[36]  F. Racioppi,et al.  Quantitative in situ monitoring of organohalogen compounds in domestic sewage resulting from the use of hypochlorite bleach , 1996 .

[37]  M. Henze Biological phosphorus removal from wastewater: processes and technology , 1996 .

[38]  Eun Namkung,et al.  ESTIMATING VOLATILE ORGANIC COMPOUND EMISSIONS FROM PUBLICLY OWNED TREATMENT WORKS. , 1987 .

[39]  P. Mccarty,et al.  Model of steady-state-biofilm kinetics. , 1980, Biotechnology and bioengineering.

[40]  W. Shiu,et al.  Generic models for evaluating the regional fate of chemicals , 1992 .

[41]  M. B. Beck,et al.  Dynamic modelling of the activated sludge process: a case study , 1993 .

[42]  R. Larson,et al.  Kinetics and practical significance of biodegradation of linear alkylbenzene sulfonate in the environment , 1993 .

[43]  W. L. Troxler,et al.  Prediction of the fates of organic chemicals in a biological treatment process—an overview , 1984 .

[44]  P. Dold,et al.  Denitrification behaviour in biological excess phosphorus removal activated sludge systems , 1996 .

[45]  G. V. R. Marais,et al.  A hypothesis for the cause of low F/M filament bulking in nutrient removal activated sludge systems , 1992 .

[46]  J. Lester,et al.  Heavy metal behaviour during the activated sludge process I. Extent of soluble and insoluble metal removal , 1987 .

[47]  D. D. Mara Bacteriology for sanitary engineers , 1974 .

[48]  D. Mackay,et al.  Calculating fugacity. , 1981, Environmental science & technology.

[49]  Johan Van Assel,et al.  Sewer flow quality modelling , 1997 .

[50]  W. Verstraete,et al.  Biochemical Ecology of Nitrification and Denitrification , 1977 .

[51]  Peter A. Vanrolleghem,et al.  RESPIROMETRY AS TOOL FOR RAPID CHARACTERIZATION OF WASTEWATER AND ACTIVATED SLUDGE , 1995 .

[52]  Poel P van der,et al.  Uniform System for the Evaluation of Substances (USES), version 4.0 , 1998 .

[53]  O. K. Scheible,et al.  Manual: Nitrogen control , 1993 .

[54]  M. Stenstrom,et al.  Estimating Emissions of 20 VOCs. II: Diffused Aeration , 1993 .

[55]  H. Buckland,et al.  UK monitoring study on the removal of linear alkylbenzene sulphonate in trickling filter type sewage treatment plants. Contribution to GREAT-ER project # 2 , 1998 .

[56]  Peter A. Vanrolleghem,et al.  A geo-referenced aquatic exposure prediction methodology for ‘down-the-drain’ chemicals , 1997 .

[57]  S. Isaacs,et al.  An analysis of nitrogen removal and control strategies in an alternating activated sludge process , 1995 .

[58]  A. Moreno,et al.  Biodegradability of LAS in sewer system , 1990 .

[59]  M. Henze,et al.  Wastewater Treatment: Biological and Chemical Processes , 1995 .

[60]  S. Kaiser,et al.  Comparison of activated sludge microbial communities using biologTM microplates , 1998 .

[61]  J. Suschka Hydraulic performance of percolating biological filters and consideration of oxygen transfer , 1987 .

[62]  J. Waters,et al.  An improved microdesulphonation/gas liquid chromatography procedure for the determination of linear alkylbenzene sulphonates in U.K. rivers , 1983 .

[63]  V. Rich Personal communication , 1989, Nature.

[64]  R W Hockney,et al.  The Simulation Program , 1988 .

[65]  J. J. Heijnen,et al.  Biological phosphorus removal from wastewater by anaero-bic-anoxic sequencing batch reactor , 1993 .

[66]  John Ingham,et al.  Dynamics of Environmental Bioprocesses , 1995 .

[67]  A. Gustard,et al.  Low Flow Estimation in the United Kingdom , 1992 .

[68]  G. Ekama,et al.  Principles in the design of single‐sludge activated‐sludge systems for biological removal of carbon, nitrogen, and phosphorus , 1997 .

[69]  Mogens Henze,et al.  Biological phosphorus uptake under anoxic and aerobic conditions , 1993 .

[70]  Thorkild Hvitved-Jacobsen,et al.  Biological activity of biofilm and sediment in the Emscher River, Germany , 1998 .

[71]  U. Strotmann,et al.  The toxicity of substituted phenols in the nitrification inhibition test and luminescent bacteria test. , 1995, Ecotoxicology and environmental safety.

[72]  G. Sayler,et al.  Mineralization of Linear Alkylbenzene Sulfonate by a Four-Member Aerobic Bacterial Consortium , 1991, Applied and environmental microbiology.

[73]  Tom C. J. Feijtel,et al.  An improved model for predicting the fate of consumer product chemicals in wastewater treatment plants , 1993 .

[74]  W. Verstraete,et al.  Three-step measurement by the Sapromat to evaluate the BOD5, the mineral imbalance and the toxicity of water samples , 1974 .

[75]  D. Mackay,et al.  Evaluating the environmental behavior of chemicals with a level III fugacity model , 1985 .

[76]  F. Schröder Concentrations of anionic surfactants in receiving riverine water : results of a long-term monitoring programme in the river Rur , 1995 .

[77]  P. Roberts,et al.  Modeling volatile organic solute removal by surface and bubble aeration , 1984 .

[78]  D. Hempel,et al.  Growth and decay in an auto-/heterotrophic biofilm , 1997 .

[79]  W Gujer,et al.  A multispecies biofilm model , 1986, Biotechnology and bioengineering.

[80]  G. Southworth,et al.  The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments , 1979, Bulletin of environmental contamination and toxicology.

[81]  F. Korte,et al.  Effect of the microbial population size on the degradation of linear alkylbenzene sulfonate in lake water (Dong Hu = East Lake, Wuhan, Hubei, P.R. China) , 1989 .

[82]  J. Mandelstam,et al.  Turnover of protein and nucleic acid in soluble and ribosome fractions of non-growing Escherichia coli. , 1960, Biochimica et biophysica acta.

[83]  J. J. Heijnen,et al.  Steady-state analysis to evaluate the phosphate removal capacity and acetate requirement of biological phosphorus removing mainstream and sidestream process configurations , 1996 .

[84]  D. Mackay,et al.  Rate of evaporation of low-solubility contaminants from water bodies to atmosphere , 1973 .

[85]  Henri Spanjers,et al.  Respirometry in activated sludge , 1993 .

[86]  Antonio Di Guardo,et al.  Assessment of chemical fate in the environment using evaluative, regional and local‐scale models: Illustrative application to chlorobenzene and linear alkylbenzene sulfonates , 1996 .

[87]  J. B. Guckert,et al.  Environmental chemistry for a surfactant ecotoxicology study supports rapid degradation of C12‐alkyl sulfate in a continuous‐flow stream Mesocosm , 1996 .

[88]  J. Manem,et al.  Bioflocculation in activated sludge: an analytic approach , 1993 .

[89]  D vandeMeent,et al.  SimpleTreat: a spreadsheet-based box model to predict the fate of xenobiotics in a municipal waste water treatment plant , 1991 .

[90]  Y. Wong,et al.  Significance of External Carbon Sources on Simultaneous Removal of Nutrients from Wastewater , 1992 .

[91]  H. Takada,et al.  Rapid removal of linear alkylbenzenesulfonates (LAS) by attached biofilm in an urban shallow stream , 1994 .

[92]  Niels Nyholm,et al.  Evaluation and modification of the simpletreat chemical fate model for activated sludge sewage treatment plants , 1996 .

[93]  S Trapp,et al.  Estimation of releases into rivers with the steady-state surface water model EXWAT using dichloromethane. , 1990, Ecotoxicology and environmental safety.

[94]  Mogens Henze,et al.  Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal , 1995 .

[95]  T. Fukushima,et al.  Fate of Linear Alkylbenzenesulfonates in a Lake Estuary , 1991 .

[96]  C. E. Round BSc,et al.  A Regionally Applicable Model for Estimating Flow Velocity at Ungauged River Sites in the UK , 1998 .

[97]  岡本 悠子 Society of Environmental Toxicology and Chemistry , 1997 .

[98]  J Struijs,et al.  SimpleTreat 3.0: a model to predict the distribution and elimination of Chemicals by Sewage Treatment Plants , 1996 .

[99]  P. Vanrolleghem,et al.  A geo-referenced fate simulation methodology for aquatic exposure assessment of 'down-the-drain' chemicals , 1997 .

[100]  Henryk Melcer,et al.  Modeling volatile organic contaminants' fate in wastewater treatment plants , 1994 .

[101]  Perry L. McCarty,et al.  Substrate Flux into Biofilms of Any Thickness , 1981 .

[102]  E. Matthijs,et al.  DETERMINATION OF LAS: DETERMINATION OF LINEAR ALKYLBENZENESULFONATES IN AQUEOUS SAMPLES, SEDIMENTS, SLUDGES AND SOILS USING HPLC. , 1987 .

[103]  Matthew MacLeod,et al.  Multimedia Environmental Models , 2020 .

[104]  L. J. Poole,et al.  Estimation of the competent biomass concentration for the degradation of synthetic organic compounds in an activated sludge culture receiving a multicomponent feed , 1998 .

[105]  E. C. Hennes,et al.  Calculation and Analytical Verification of LAS Concentrations in Surface Waters, Sediment and Soil , 1989 .

[106]  G Boeije,et al.  Adaptation of the CAS test system and synthetic sewage for biological nutrient removal. Part I: development of a new synthetic sewage. , 1999, Chemosphere.

[107]  Paul V. Roberts,et al.  Gas- and liquid-phase mass transfer resistances of organic compounds during mechanical surface aeration , 1989 .

[108]  W. Frey,et al.  Nitrification Inhibition - A Source Identification Method for Combined Municipal and/or Industrial Wastewater Treatment Plants , 1992 .

[109]  B. Rittmann,et al.  Modeling bisubstrate removal by biofilms , 1987, Biotechnology and bioengineering.

[110]  Marijan Ahel,et al.  Primary biodegradation kinetics of linear alkylbenzene sulphonates in estuarine waters , 1992 .

[111]  R. Larson,et al.  Fate of the Benzene Ring of Linear Alkylbenzene Sulfonate in Natural Waters , 1981, Applied and environmental microbiology.

[112]  G. Bergshoeff,et al.  Use of azure A instead of methylene blue for determination of anionic detergents in drinking and surface waters , 1969 .

[113]  A. Weidenhaupt,et al.  ENVIRONMENTAL RISK ASSESSMENT OF CHEMICAL SUBSTANCES , 1997 .

[114]  J. Devillers,et al.  CHEMFRANCE: a regional level III fugacity model applied to France , 1995 .

[115]  M. Comber,et al.  AIS/CESIO environmental surfactant monitoring programme. SDIA sewage treatment pilot study on linear alkylbenzene sulphonate (LAS) , 1995 .

[116]  A. Ruschi,et al.  Detection of coliphages and enteroviruses in sewage and aerosol from an activated sludge wastewater treatment plant , 1995, Letters in applied microbiology.

[117]  R. Counce,et al.  A Model of a Fixed-Film Trickle-Filter Bioreactor for TCE Degradation , 1995 .

[118]  Meent D van de SIMPLEBOX: a generic multimedia fate evaluationmodel , 1993 .

[119]  Bruce E. Rittmann,et al.  Advanced steady‐state model for the fate of hydrophobic and volatile compounds in activated sludge , 1998 .

[120]  Tom C. J. Feijtel,et al.  Development of a geography-referenced regional exposure assessment tool for European rivers - great-er contribution to great-er #1 , 1997 .

[121]  Tom C. J. Feijtel,et al.  Development of a geography-referenced regional exposure assessment tool for European rivers—GREAT-ER , 1998 .

[122]  J. Struijś,et al.  Fate prediction of specific organic compounds in bioreactors , 1996 .

[123]  John N. Lester,et al.  Heavy metal removal in primary sedimentation I. The influence of metal solubility , 1987 .

[124]  S. Qasim,et al.  Effect of Biodegradable Carbon on Biological Phosphorus Removal , 1996 .

[125]  Joshua T. Cohen,et al.  The use of two‐stage Monte Carlo simulation techniques to characterize variability and uncertainty in risk analysis , 1996 .

[126]  M. Matthies,et al.  Simulation and Visualisation of Spatial Exposure Patterns , 1998 .

[127]  Willy Verstraete,et al.  Design and verification of a model secondary clarifier for activated sludge , 1996 .

[128]  D. van de Meent,et al.  A spreadsheet-based box model to predict the fate of xenobiotics in a municipal wastewater treatment plant , 1991 .

[129]  Gustaf Olsson,et al.  Determining short-term biochemical oxygen demand and respiration rate in an aeration tank by using respirometry and estimation , 1994 .

[130]  T. Overcamp,et al.  Simple solutions for steady-state biofilm reactors. , 1990 .

[131]  V. Lazarova,et al.  Biofilm characterization and activity analysis in water and wastewater treatment , 1995 .

[132]  Lei Lai,et al.  Integrated model for predicting the fate of organics in wastewater treatment plants , 1991 .

[133]  Eun Namkung,et al.  Predicting removal of trace organic compounds by biofilms , 1983 .

[134]  S. J. Pirt,et al.  Principles of microbe and cell cultivation , 1975 .

[135]  R. A. Rapaport,et al.  Prediction of consumer product chemical concentrations as a function of publicly owned treatment works treatment type and riverine dilution , 1988 .

[136]  Eun Namkung,et al.  Secondary utilization of trace organics by biofilms on porous media , 1983 .