The Vicia sativa spp. nigra - Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense

[1]  C. Bruand,et al.  The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. , 2010, Molecular plant-microbe interactions : MPMI.

[2]  Y. Okon,et al.  Chapter 7 Plant Growth-Promoting Actions of Rhizobacteria , 2009 .

[3]  F. Cassan,et al.  Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.) , 2009 .

[4]  M. Megias,et al.  Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress , 2008 .

[5]  L. Lamattina,et al.  Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. , 2008, Molecular plant-microbe interactions : MPMI.

[6]  J. Vanderleyden,et al.  Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba , 2008, Plant and Soil.

[7]  Bernard R. Glick,et al.  Promotion of plant growth by ACC deaminase-producing soil bacteria , 2007, European Journal of Plant Pathology.

[8]  Jos Vanderleyden,et al.  Indole-3-acetic acid in microbial and microorganism-plant signaling. , 2007, FEMS microbiology reviews.

[9]  William E. Newton,et al.  Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations , 2007 .

[10]  S. Dobbelaere,et al.  The Plant Growth-Promoting Effect and Plant Responses , 2007 .

[11]  E. de Rijke,et al.  Analytical separation and detection methods for flavonoids. , 2006, Journal of chromatography. A.

[12]  C. Chevalier,et al.  Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. , 2006, Journal of experimental botany.

[13]  L. Lamattina,et al.  Nitric Oxide is Involved in the Azospirillum brasilense-induced Lateral Root Formation in Tomato , 2005, Planta.

[14]  V. Baldani,et al.  Establishment of inoculatedAzospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum , 1986, Plant and Soil.

[15]  J. Caballero-Mellado,et al.  BACTERIAL BIOFERTILIZERS , 2005 .

[16]  J. Kijne,et al.  Accumulation of lipochitin oligosaccharides and NodD-activating compounds in an efficient plant--Rhizobium nodulation assay. , 2004, Molecular plant-microbe interactions : MPMI.

[17]  J. Vanderleyden,et al.  Molecular cloning and sequence analysis of an Azospirilium brasilense indole-3-pyruvate decarboxylase gene , 1994, Molecular and General Genetics MGG.

[18]  J. Germida,et al.  Influence of Pseudomonas syringae R25 and P. putida R105 on the growth and N2 fixation (acetylene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.) , 1993, Biology and Fertility of Soils.

[19]  J. Vanderleyden,et al.  Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat , 2004, Plant and Soil.

[20]  G. Pagnussat,et al.  Nitric Oxide and Cyclic GMP Are Messengers in the Indole Acetic Acid-Induced Adventitious Rooting Process1 , 2003, Plant Physiology.

[21]  J. Kijne,et al.  Autoregulation of root nodule formation: signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp. nigra. , 2002, Molecular plant-microbe interactions : MPMI.

[22]  P. Poole,et al.  The Rhizobium leguminosarum bv. viciae VF39 gamma-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. , 2002, Microbiology.

[23]  Van Brussel Autoregulation of root nodule formation : signals of both symbiotic partners studied in a split-root system of Vicia sativa subsp , 2002 .

[24]  ’. Yaacovokon,et al.  AGRONOMIC APPLICATIONS OF AZOSPIRILLUM : AN EVALUATION OF 20 YEARS WORLDWIDE FIELD INOCULATION , 2002 .

[25]  S. Burdman,et al.  Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions , 2001 .

[26]  J. Vanderleyden,et al.  Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245 , 2001, Archives of Microbiology.

[27]  G. Holguin,et al.  Expression of the ACC Deaminase Gene fromEnterobacter cloacae UW4 in Azospirillum brasilense , 2001, Microbial Ecology.

[28]  M. Lambrecht,et al.  Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. , 2000, Trends in microbiology.

[29]  J. González-López,et al.  Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.) , 1999, Biology and Fertility of Soils.

[30]  J. Kigel,et al.  Legume Crop Yield Promotion by Inoculation with Azospirillum , 1998 .

[31]  A. Kondorosi,et al.  Biological Nitrogen Fixation for the 21st Century , 1998, Current Plant Science and Biotechnology in Agriculture.

[32]  J. Kigel,et al.  Promotion of nod Gene Inducers and Nodulation in Common Bean (Phaseolus vulgaris) Roots Inoculated with Azospirillum brasilense Cd , 1996, Applied and environmental microbiology.

[33]  J. González-López,et al.  Enhancement of nodulation, N2-fixation and growth of faba bean (Vicia faba L.) by combined inoculation with Rhizobium leguminosarum bv. viceae and Azospirillum brasilense , 1996 .

[34]  S. Castro-Sowinski,et al.  Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots , 1996 .

[35]  J. Vanderleyden,et al.  The Rhizobium-plant symbiosis. , 1995, Microbiological reviews.

[36]  Y. Dessaux,et al.  A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria , 1995, Applied and environmental microbiology.

[37]  Y. Okon,et al.  Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots , 1989 .

[38]  Y. Okon,et al.  Azospirillum effects on susceptibility to Rhizobium nodulation and on nitrogen fixation of several forage legumes , 1987 .

[39]  Y. Okon,et al.  Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes , 1986 .

[40]  B. Rolfe,et al.  Influence of Azospirillum Strains on the Nodulation of Clovers by Rhizobium Strains , 1985, Applied and environmental microbiology.

[41]  H. Grimes,et al.  Influence oF Pseudomonas putida on nodulation of Phaseolus vulgaris , 1984 .

[42]  K. Vlassak,et al.  Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2-fixation of winged bean and soybean , 1983 .

[43]  J. Döbereiner,et al.  A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. , 1978, Canadian journal of microbiology.

[44]  D. Focht,et al.  Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum , 1977, Applied and environmental microbiology.

[45]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[46]  J. Vincent A manual for the practical study of root-nodule bacteria , 1971 .