The quantum electrodynamics of relativistic bound states with cutoffs. I

In this note, we consider a Hamiltonian with ultraviolet and infrared cutoffs describing the interaction of relativistic electrons and positrons in a Coulomb potential with transversal photons in Coulomb gauge. We prove that the Hamiltonian is self-adjoint in the Fock space and has a ground state for a sufficiently small coupling constant.

[1]  Existence of Atoms and Molecules in Non-Relativistic Quantum Electrodynamics , 2003, math-ph/0307046.

[2]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[3]  Daniel Kastler,et al.  Introduction à l'Electrodynamique quantique , 1963 .

[4]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[5]  W. H. Furry,et al.  Relativistic Electron Theory , 1961 .

[6]  I. Sigal,et al.  On the spectral properties of Hamiltonians without conservation of the particle number , 2002 .

[7]  Scattering Theory for the Spin Fermion Model , 2002 .

[8]  M. Hirokawa,et al.  Grounds states of a general class of quantum field Hamiltonians , 1999 .

[9]  J. Dereziński,et al.  ASYMPTOTIC COMPLETENESS IN QUANTUM IN FIELD THEORY: MASSIVE PAULI–FIERZ HAMILTONIANS , 1999 .

[10]  Asymptotic Electromagnetic Fields in Models of Quantum-Mechanical Matter Interacting with the Quantized Radiation Field , 2000, math-ph/0009033.

[11]  Stability and instability of relativistic electrons in classical electromagnetic fields , 1996, cond-mat/9610195.

[12]  Ground states in non-relativistic quantum electrodynamics , 2000, math-ph/0007014.

[13]  A. Arai On a model of a harmonic oscillator coupled to a quantized massless, scalar field. II , 1981 .

[14]  Ground State of a Quantum Particle Coupled to a Scalar Bose Field , 1998 .

[15]  Israel Michael Sigal,et al.  Renormalization Group Analysis of Spectral Problems in Quantum Field Theory , 1998 .

[16]  V. Bach,et al.  Exponential Decay of Eigenfunctions of the Bethe–Salpeter Operator , 2001 .

[17]  J. Dereziński Asymptotic Completeness in Quantum Field Theory. A Class of Galilei-Covariant Models , 1998 .

[18]  M. Hirokawa,et al.  On the Existence and Uniqueness of Ground States of a Generalized Spin-Boson Model , 1997 .

[19]  QUANTUM ELECTRODYNAMICS OF RELATIVISTIC BOUND STATES WITH CUTOFFS , 2004 .

[20]  C. Gérard On the Existence of Ground States for Massless Pauli-Fierz Hamiltonians , 2000 .

[21]  Silvan S. Schweber,et al.  An Introduction to Relativistic Quantum Field Theory , 1962 .

[22]  Tosio Kato Perturbation theory for linear operators , 1966 .

[23]  Tu Berlin,et al.  Quantum Electrodynamics of Confined Nonrelativistic Particles , 1998 .

[24]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[25]  J. Fröhlich,et al.  Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field , 1999 .

[26]  F. Hiroshima Ground states of a model in nonrelativistic quantum electrodynamics. I , 1999 .

[27]  A. Arai A particle-field Hamiltonian in relativistic quantum electrodynamics , 2000 .

[28]  Instability of a pseudo-relativistic model of matter with self-generated magnetic field , 1998, math-ph/9811028.

[29]  B. Simon,et al.  Hypercontractive semigroups and two dimensional self-coupled Bose fields , 1972 .

[30]  E. Lieb,et al.  Stability of a Model of Relativistic Quantum Electrodynamics , 2001, math-ph/0109002.

[31]  S. Weinberg The Quantum Theory of Fields, Vol. 2: Modern Applications , 1996 .

[32]  M. Hirokawa,et al.  On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff , 1998 .