Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  O. Salafia,et al.  Electromagnetic counterparts of black hole–neutron star mergers: dependence on the neutron star properties , 2019, The European Physical Journal A.

[3]  Robert W. Taylor,et al.  Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant , 2019, 1908.01012.

[4]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  Zaven Arzoumanian,et al.  Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar , 2020, Nature Astronomy.

[6]  T. Narikawa,et al.  Reanalysis of the binary neutron star merger GW170817 using numerical-relativity calibrated waveform models , 2019, 1910.08971.

[7]  M. Shibata,et al.  Constraint on the maximum mass of neutron stars using GW170817 event , 2019, Physical Review D.

[8]  B. Metzger,et al.  The Multi-messenger Matrix: The Future of Neutron Star Merger Constraints on the Nuclear Equation of State , 2019, The Astrophysical Journal.

[9]  M. Shibata,et al.  Revisiting the Lower Bound on Tidal Deformability Derived by AT 2017gfo , 2019, The Astrophysical Journal.

[10]  L. Rezzolla,et al.  A General-relativistic Determination of the Threshold Mass to Prompt Collapse in Binary Neutron Star Mergers , 2019, The Astrophysical Journal.

[11]  S. Gandolfi,et al.  Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances , 2019, Annual Review of Nuclear and Particle Science.

[12]  B. Metzger,et al.  Multimessenger Bayesian parameter inference of a binary neutron star merger , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[13]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[14]  D. Radice,et al.  Multimessenger parameter estimation of GW170817 , 2018, The European Physical Journal A.

[15]  S. Reddy,et al.  Confronting gravitational-wave observations with modern nuclear physics constraints , 2018, The European Physical Journal A.

[16]  Lawrence E. Kidder,et al.  Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study , 2018, Physical Review D.

[17]  Duncan A. Brown,et al.  PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals , 2018, Publications of the Astronomical Society of the Pacific.

[18]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[19]  C. Broeck,et al.  Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects , 2018, Physical Review D.

[20]  Duncan A. Brown,et al.  Erratum: Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817 [Phys. Rev. Lett. 121, 091102 (2018)]. , 2018, Physical review letters.

[21]  Samaya Nissanke,et al.  Remnant baryon mass in neutron star-black hole mergers: Predictions for binary neutron star mimickers and rapidly spinning black holes , 2018, Physical Review D.

[22]  R. Fern'andez,et al.  Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[24]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[25]  S. Reddy,et al.  Critical examination of constraints on the equation of state of dense matter obtained from GW170817 , 2018, Physical Review C.

[26]  J. Hjorth,et al.  A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations , 2018, 1801.06080.

[27]  Sanjay Reddy,et al.  Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations , 2018, The Astrophysical Journal.

[28]  M. Ruiz,et al.  GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. , 2017, Physical review. D..

[29]  K. Schmidt,et al.  Properties of Nuclei up to A=16 using Local Chiral Interactions. , 2017, Physical review letters.

[30]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[31]  L. Rezzolla,et al.  Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars , 2017, 1711.00314.

[32]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[33]  Yuichiro Sekiguchi,et al.  Modeling GW170817 based on numerical relativity and its implications , 2017, 1710.07579.

[34]  Hans-Thomas Janka,et al.  Neutron-star Radius Constraints from GW170817 and Future Detections , 2017, 1710.06843.

[35]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[36]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[37]  B. Metzger,et al.  Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817 , 2017, 1710.05938.

[38]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[39]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[40]  R. Nichol,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Dark Energy Camera Discovery of the Optical Counterpart , 2017, 1710.05459.

[41]  S. Bernuzzi,et al.  Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations , 2017, 1706.02969.

[42]  D. Siegel,et al.  Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis. , 2017, Physical review letters.

[43]  R. J. Furnstahl,et al.  Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables , 2017, 1704.03308.

[44]  N. Stergioulas,et al.  Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers , 2017, 1702.02567.

[45]  I. Tews Spectrum of shear modes in the neutron-star crust: Estimating the nuclear-physics uncertainties , 2016, 1607.06998.

[46]  P. Freire,et al.  Masses, Radii, and the Equation of State of Neutron Stars , 2016, 1603.02698.

[47]  Curran D. Muhlberger,et al.  Gravitational waveforms for neutron star binaries from binary black hole simulations , 2015, 1509.05782.

[48]  K. Schmidt,et al.  Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter. , 2015, Physical review letters.

[49]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[50]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[51]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[52]  K. Ioka,et al.  Dynamical mass ejection from black hole-neutron star binaries , 2015, 1502.05402.

[53]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[54]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[55]  A. Steiner,et al.  Sound velocity bound and neutron stars. , 2014, Physical review letters.

[56]  Roy Williams,et al.  The LIGO Open Science Center , 2014, 1410.4839.

[57]  F. Ohme,et al.  PROSPECTS FOR JOINT GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS OF NEUTRON-STAR–BLACK-HOLE COALESCING BINARIES , 2014, 1406.6057.

[58]  H. Janka,et al.  Prompt merger collapse and the maximum mass of neutron stars. , 2013, Physical review letters.

[59]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[60]  B. Metzger,et al.  Delayed outflows from black hole accretion tori following neutron star binary coalescence , 2013, 1304.6720.

[61]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.

[62]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[63]  Chris L. Fryer,et al.  WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS? , 2013, 1301.5616.

[64]  K. Hotokezaka,et al.  Mass ejection from the merger of binary neutron stars , 2012, 1212.0905.

[65]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[66]  Takashi Okajima,et al.  The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timing spectroscopy , 2012, Other Conferences.

[67]  Francois Foucart,et al.  Black-hole-neutron-star mergers: Disk mass predictions , 2012, 1207.6304.

[68]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[69]  Nathalie Degenaar,et al.  Cooling of Accretion-Heated Neutron Stars , 2017, 1709.07034.

[70]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[71]  T. Hinderer,et al.  Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.

[72]  J. Lattimer,et al.  What a Two Solar Mass Neutron Star Really Means , 2010, 1012.3208.

[73]  J. Lattimer,et al.  Constraints on neutron star radii based on chiral effective field theory interactions. , 2010, Physical review letters.

[74]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[75]  A. Cumming,et al.  MAPPING CRUSTAL HEATING WITH THE COOLING LIGHT CURVES OF QUASI-PERSISTENT TRANSIENTS , 2009, 0901.3115.

[76]  K. G. Arun,et al.  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2008, 0810.5336.

[77]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[78]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[79]  M. Shibata,et al.  Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves , 2007, 0711.1410.

[80]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[81]  W. Lewin,et al.  Compact Stellar X-Ray Sources: Preface , 2006 .

[82]  L. Gergely,et al.  Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.

[83]  C. Kim,et al.  An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system , 2003, Nature.

[84]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[85]  U. van Kolck,et al.  Few-nucleon forces from chiral Lagrangians. , 1994 .

[86]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[87]  S. Weinberg Effective chiral lagrangians for nucleonpion interactions and nuclear forces , 1991 .

[88]  Steven Weinberg,et al.  Nuclear forces from chiral Lagrangians , 1990 .

[89]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[90]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .