Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil andmore » vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[3]  M. Ek,et al.  Continental‐scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS‐2): 2. Validation of model‐simulated streamflow , 2012 .

[4]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[5]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[6]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[7]  Andrew E. Suyker,et al.  Evapotranspiration of irrigated and rainfed maize–soybean cropping systems , 2009 .

[8]  Zong-Liang Yang,et al.  Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data , 2007 .

[9]  Murugesu Sivapalan,et al.  Modeling the spatial variability of subsurface runoff using a topographic index , 1997 .

[10]  R. Miller,et al.  Changes in Soil Microbial Community Structure in a Tallgrass Prairie Chronosequence , 2005 .

[11]  Patrick M. Reed,et al.  When are multiobjective calibration trade‐offs in hydrologic models meaningful? , 2012 .

[12]  David P. Billesbach,et al.  Spatiotemporal Variations in Growing Season Exchanges of CO2, H2O, and Sensible Heat in Agricultural Fields of the Southern Great Plains , 2007 .

[13]  Guang Lin,et al.  Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model , 2012 .

[14]  Yoram Rubin,et al.  Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling- based stochastic model , 2004 .

[15]  Karel J. Keesman,et al.  Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .

[16]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[17]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[18]  B. Hicks,et al.  Land–Atmosphere Interaction Research, Early Results, and Opportunities in the Walnut River Watershed in Southeast Kansas: CASES and ABLE , 2000 .

[19]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[20]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[21]  Yinghai Ke,et al.  Development of high resolution land surface parameters for the Community Land Model , 2012 .

[22]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[23]  Y. Rubin,et al.  Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data , 2006 .

[24]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[25]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[26]  William J. Massman,et al.  The fundamental equation of eddy covariance and its application in flux measurements , 2012 .

[27]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[28]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[29]  Mark Heuer,et al.  Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site , 2006 .

[30]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[31]  H. Scholten,et al.  Prediction Uncertainty in an Ecological Model of the Oosterschelde Estuary , 1991 .

[32]  Yoram Rubin,et al.  On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward modeling , 2005 .

[33]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[34]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[35]  Zong-Liang Yang,et al.  A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models , 2005 .

[36]  David P. Billesbach,et al.  Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling , 2009 .

[37]  J. Blair,et al.  CHANGES IN ECOSYSTEM STRUCTURE AND FUNCTION ALONG A CHRONOSEQUENCE OF RESTORED GRASSLANDS , 2002 .

[38]  Yinghai Ke,et al.  Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed , 2011 .

[39]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[40]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[41]  Yinghai Ke,et al.  Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model: Evidence from MOPEX Basins , 2013 .

[42]  Norman L. Miller,et al.  A generalized power function for the subsurface transmissivity profile in TOPMODEL , 1997 .

[43]  Keith Beven,et al.  TOPMODEL : a critique. , 1997 .

[45]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[46]  S. Sorooshian Parameter estimation of rainfall-runoff models with heteroscedastic streamflow errors — The noninformative data case , 1981 .

[47]  Y. Rubin,et al.  Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data , 2005 .

[48]  J. Randerson,et al.  Technical Description of version 4.0 of the Community Land Model (CLM) , 2010 .

[49]  André Musy,et al.  Generalization of TOPMODEL for a power law transmissivity profile , 1997 .

[50]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .