Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials

The critical role of the ionic conductivity properties of materials in the development of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) technology has been emphasized over the past decade. However, from a fundamental point of view, little is known of the physicochemical parameters influencing ionic diffusion in these conductors. We attempted, through a Density Functional Theory investigation, to develop a new approach for an oxygen diffusion study in solids at the atomic scale. This methodology relies on the evaluation and comparison of steric, energetic, and chemical bonding factors along with the consideration of charge transfers when mixed valences do exist. Microscopic aspects of oxygen diffusion in the ionic conductor ceria-based materials have been investigated by means of this procedure. It has been demonstrated that steric and polarizability effects prevail over other ones for both nonstoichiometric and doped ceria.

[1]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[2]  K. Schwarz,et al.  Electronic structure calculations of solids using the WIEN2k package for material sciences , 2002 .

[3]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[4]  A. B. Lidiard Atomistic calculations of defects in ionic solids-their development and their significance , 1993 .

[5]  C. Grey,et al.  Probing Oxygen Motion in Disordered Anionic Conductors with 17O and 51V MAS NMR Spectroscopy , 2002, Science.

[6]  D.J.M. Bevan,et al.  Ordered intermediate phases in the system CeO2Ce2O3 , 1955 .

[7]  Stefano de Gironcoli,et al.  Vacancy self-diffusion parameters in tungsten: Finite electron-temperature LDA calculations , 1998 .

[8]  W. Petry,et al.  Potential and Limits of Nuclear Methods in Diffusion Studies , 1987 .

[9]  T. Rahman,et al.  Role of Lattice Vibrations in Adatom Diffusion , 1997 .

[10]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[11]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[12]  J. Bassat,et al.  Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides , 2003 .

[13]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[14]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[15]  R. Rüffer,et al.  DIFFUSION IN A CRYSTAL LATTICE WITH NUCLEAR RESONANT SCATTERING OF SYNCHROTRON RADIATION , 1998 .

[16]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[17]  J. Kilner,et al.  The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides , 1982 .

[18]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[19]  C. Catlow Static lattice simulation of structure and transport in superionic conductors , 1983 .

[20]  R. Rüffer,et al.  Diffusion in solids studied by nuclear resonant X-ray and neutron scattering. , 2002, Journal of synchrotron radiation.

[21]  J. Harding Computer simulation of defects in ionic solids , 1990 .

[22]  G. Petot-ervas,et al.  Microstructure and transport properties of Y-doped zirconia and Gd-doped ceria , 2003 .

[23]  B. Lundqvist,et al.  Quantum origin of the oxygen storage capability of ceria. , 2002, Physical review letters.

[24]  R. Grimes,et al.  Defect cluster formation in M2O3-doped CeO2 , 1999 .

[25]  K. Kawamura,et al.  Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants , 2000 .

[26]  R. Hempelmann Quasielastic Neutron Scattering and Solid State Diffusion , 2000 .

[27]  K. Kishio,et al.  Study on vacancy motion in Y2O3-doped CeO2 by 17O NMR technique , 1985 .

[28]  B. Steele,et al.  Material science and engineering: The enabling technology for the commercialisation of fuel cell systems , 2001 .

[29]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[32]  K. Kishio,et al.  17 O NMR study of Y2O3-doped CeO2 , 1984 .

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Y. Aray,et al.  An implementation of the atoms in molecules theory to the FPLAPW method , 2002 .

[35]  Á. M. Pendás,et al.  Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals , 1997 .

[36]  J. Kilner,et al.  Oxygen migration in La2NiO4 + δ , 2000 .

[37]  Georg Kresse,et al.  Migration of O vacancies in α-quartz: The effect of excitons and electron holes , 2001 .

[38]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[39]  Takanori Inoue,et al.  Electrical properties of ceria-based oxides and their application to solid oxide fuel cells , 1992 .

[40]  C. Catlow,et al.  Dopant ion radius and ionic conductivity in cerium dioxide , 1983 .

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[43]  Börje Johansson,et al.  Electronic, bonding, and optical properties of CeO 2 and Ce 2 O 3 from first principles , 2001 .

[44]  I. Riess,et al.  Nonstoichiometric phases in cerium oxide , 1988 .