Effects of imaging conditions on mitochondrial transport and length in larval motor axons of Drosophila.

[1]  Jeff W Lichtman,et al.  Imaging axonal transport of mitochondria in vivo , 2007, Nature Methods.

[2]  Ivana Nikić,et al.  In vivo imaging of single axons in the mouse spinal cord , 2007, Nature Protocols.

[3]  D. Featherstone,et al.  Nonvesicular Release of Glutamate by Glial xCT Transporters Suppresses Glutamate Receptor Clustering In Vivo , 2007, The Journal of Neuroscience.

[4]  I. Reynolds,et al.  Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture , 2006, Neuroscience.

[5]  I. Reynolds,et al.  Mitochondrial trafficking and morphology in healthy and injured neurons , 2006, Progress in Neurobiology.

[6]  K. C. Brennan,et al.  Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium. , 2006, American journal of physiology. Cell physiology.

[7]  A. Spradling,et al.  Milton controls the early acquisition of mitochondria by Drosophila oocytes , 2006, Development.

[8]  I. Reynolds,et al.  Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons , 2006, The Journal of Neuroscience.

[9]  S. Miroňov Spontaneous and evoked neuronal activities regulate movements of single neuronal mitochondria , 2006, Synapse.

[10]  T. Schwarz,et al.  Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent , 2006, The Journal of cell biology.

[11]  C. Lively,et al.  Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. , 2006, Molecular biology of the cell.

[12]  M. Moe,et al.  Depolarization of mitochondria in isolated CA1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity , 2006, Brain Research.

[13]  D. Brough,et al.  Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. , 2005, The Biochemical journal.

[14]  V. Popov,et al.  Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: A three‐dimensional ultrastructural study , 2005, The Journal of comparative neurology.

[15]  M. Charlton,et al.  The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses , 2005, Neuron.

[16]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[17]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[18]  M. Welte,et al.  Bidirectional Transport along Microtubules , 2004, Current Biology.

[19]  J. Renger,et al.  Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions , 1994, Journal of Comparative Physiology A.

[20]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[21]  T. Kuwana,et al.  Bcl-2-family proteins and the role of mitochondria in apoptosis. , 2003, Current opinion in cell biology.

[22]  R. Rizzuto Calcium mobilization from mitochondria in synaptic transmitter release , 2003, The Journal of cell biology.

[23]  G. Kress,et al.  Glutamate Decreases Mitochondrial Size and Movement in Primary Forebrain Neurons , 2003, The Journal of Neuroscience.

[24]  R. Youle,et al.  Dynamics of mitochondrial morphology in healthy cells and during apoptosis , 2003, Cell Death and Differentiation.

[25]  N. Demaurex,et al.  Apoptosis--the Calcium Connection , 2003, Science.

[26]  D. Newmeyer,et al.  Mitochondria Releasing Power for Life and Unleashing the Machineries of Death , 2003, Cell.

[27]  R. Cooper,et al.  Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae. , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[28]  M. Charlton,et al.  Fast calcium signals in Drosophila motor neuron terminals. , 2002, Journal of neurophysiology.

[29]  I. Maly A stochastic model for patterning of the cytoplasm by the saltatory movement. , 2002, Journal of theoretical biology.

[30]  Richard D. Fetter,et al.  wishful thinking Encodes a BMP Type II Receptor that Regulates Synaptic Growth in Drosophila , 2002, Neuron.

[31]  E. Marra,et al.  Glutamate neurotoxicity, oxidative stress and mitochondria , 2001, FEBS letters.

[32]  R. Simmons,et al.  Models of motor-assisted transport of intracellular particles. , 2001, Biophysical journal.

[33]  T. Pozzan,et al.  Mitochondria as all‐round players of the calcium game , 2000, The Journal of physiology.

[34]  V. Budnik,et al.  Drosophila larval neuromuscular junction: Molecular components and mechanisms underlying synaptic plasticity , 2000, Microscopy research and technique.

[35]  W. Saxton,et al.  Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. , 1999, Molecular biology of the cell.

[36]  A. Gibbs,et al.  Osmoregulation in Drosophila melanogaster selected for urea tolerance. , 1999, The Journal of experimental biology.

[37]  D. Wallace Mitochondrial diseases in man and mouse. , 1999, Science.

[38]  S. Budd,et al.  Mitochondria and neuronal glutamate excitotoxicity. , 1998, Biochimica et biophysica acta.

[39]  B. Hille,et al.  Mitochondrial oversight of cellular Ca2+ signaling , 1998, Current Opinion in Neurobiology.

[40]  Steven P Gross,et al.  Developmental Regulation of Vesicle Transport in Drosophila Embryos: Forces and Kinetics , 1998, Cell.

[41]  G. Echalier Composition of the Body Fluid of Drosophila and the Design of Culture Media for Drosophila Cells , 1997 .

[42]  G. Echalier Drosophila cells in culture , 1997 .

[43]  W. Saxton,et al.  Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. , 1996, Genetics.

[44]  P. Hollenbeck The pattern and mechanism of mitochondrial transport in axons. , 1996, Frontiers in bioscience : a journal and virtual library.

[45]  M. Bate,et al.  The drosophila neuromuscular junction: a model system for studying synaptic development and function. , 1996, Annual review of neuroscience.

[46]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[47]  M. Gho,et al.  Effects of kinesin mutations on neuronal functions. , 1992, Science.

[48]  K. Maramorosch Advances in Cell Culture , 1989 .

[49]  J. Mitsuhashi Media for Insect Cell Cultures , 1982 .

[50]  M. Wong-Riley,et al.  Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Y. Jan,et al.  Properties of the larval neuromuscular junction in Drosophila melanogaster. , 1976, The Journal of physiology.

[52]  T. McDonald Neuromuscular pharmacology of insects. , 1975, Annual review of entomology.