TLX1 (HOX11) immortalization of embryonic stem cell-derived and primary murine hematopoietic progenitors.

The ability to generate genetically engineered cell lines is of great experimental value. They provide a renewable source of material that may be suitable for biochemical analyses, chromatin immunoprecipitation assays, structure-function studies, gene function assignment, and transcription factor target gene identification. This unit describes protocols for TLX1 (HOX11)-mediated immortalization of murine hematopoietic progenitors derived from in vitro differentiated murine embryonic stem cells, or from primary mouse fetal liver or bone marrow. A wide variety of hematopoietic cell types have been immortalized using these procedures including erythroid, megakaryocytic, monocytic, myelocytic, and multipotential cell types. These lines are typically cytokine dependent for their survival and growth.

[1]  M. Ji,et al.  Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo , 2008, Oncogene.

[2]  C. Klein,et al.  Establishment of immortalized multipotent hematopoietic progenitor cell lines by retroviral-mediated gene transfer of beta-catenin. , 2008, Experimental hematology.

[3]  David Bryder,et al.  Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. , 2007, Cell stem cell.

[4]  R. Humphries,et al.  Effects of HOXB4 Overexpression on Ex Vivo Expansion and Immortalization of Hematopoietic Cells from Different Species , 2007, Stem cells.

[5]  M. Callow,et al.  TLX1/HOX11 transcription factor inhibits differentiation and promotes a non‐haemopoietic phenotype in murine bone marrow cells , 2007, British journal of haematology.

[6]  E. Snyder,et al.  Current Protocols in Stem Cell Biology , 2007 .

[7]  D. Landsman,et al.  TLX1/HOX11-induced hematopoietic differentiation blockade , 2007, Oncogene.

[8]  J. Soulier,et al.  Transforming potential of the T‐cell acute lymphoblastic leukemia‐associated homeobox genes HOXA13, TLX1, and TLX3 , 2006, Genes, chromosomes & cancer.

[9]  A. Brownlie,et al.  Mitoferrin is essential for erythroid iron assimilation , 2006, Nature.

[10]  L. Spain,et al.  TLX1/HOX11‐mediated disruption of primary thymocyte differentiation prior to the CD4+CD8+ double‐positive stage , 2006, British journal of haematology.

[11]  N. Copeland,et al.  Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. , 2005, Blood.

[12]  S. Korsmeyer,et al.  A Role for Proapoptotic BID in the DNA-Damage Response , 2005, Cell.

[13]  R. Hawley,et al.  G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia , 2005, Oncogene.

[14]  M. L. Le Beau,et al.  HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. , 2005, Blood.

[15]  M. Baron Developmental hematopoiesis : methods and protocols , 2005 .

[16]  Kirby D. Johnson,et al.  Coregulator-dependent facilitation of chromatin occupancy by GATA-1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Robert G Hawley,et al.  Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling , 2003, Oncogene.

[18]  J. Greenblatt,et al.  Specific homeodomain-DNA interactions are required for HOX11-mediated transformation. , 2003, Blood.

[19]  J. Kutok,et al.  MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. , 2003, Cancer cell.

[20]  T. Hawley,et al.  Immortalization of yolk sac-derived precursor cells. , 2002, Blood.

[21]  S. Orkin,et al.  Distinct Domains of the GATA-1 Cofactor FOG-1 Differentially Influence Erythroid versus Megakaryocytic Maturation , 2002, Molecular and Cellular Biology.

[22]  K. Akashi,et al.  Induction of granulocytic differentiation by 2 pathways. , 2002, Blood.

[23]  L. Carlsson,et al.  Hematopoietic progenitor/stem cells immortalized by Lhx2 generate functional hematopoietic cells in vivo. , 2002, Blood.

[24]  A. Perkins,et al.  Erythroid Kruppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. , 2001, Blood.

[25]  S. Fuller,et al.  Cloning of Hybridoma Cell Lines by Limiting Dilution , 1988, Current protocols in molecular biology.

[26]  I. Bernstein,et al.  Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling , 2000, Nature Medicine.

[27]  K. Calvo,et al.  Hoxa9 Immortalizes a Granulocyte-Macrophage Colony-Stimulating Factor-Dependent Promyelocyte Capable of Biphenotypic Differentiation to Neutrophils or Macrophages, Independent of Enforced Meis Expression , 2000, Molecular and Cellular Biology.

[28]  I. Weissman,et al.  A clonogenic common myeloid progenitor that gives rise to all myeloid lineages , 2000, Nature.

[29]  M. Cleary,et al.  HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis , 2000, Oncogene.

[30]  M. Cooke,et al.  Overexpression of Wild-Type Retinoic Acid Receptor (RAR) Recapitulates Retinoic Acid-Sensitive Transformation of Primary Myeloid Progenitors by Acute Promyelocytic Leukemia RAR-Fusion Genes , 1999 .

[31]  M. Cooke,et al.  Overexpression of wild-type retinoic acid receptor alpha (RARalpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARalpha-fusion genes. , 1999, Blood.

[32]  T. Hawley,et al.  Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. , 1998, Blood.

[33]  M. Cleary,et al.  Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX–ENL , 1997, The EMBO journal.

[34]  S. Korsmeyer,et al.  HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint , 1997, Nature.

[35]  M. Kamps,et al.  Oncoprotein E2A-Pbx1 immortalizes a myeloid progenitor in primary marrow cultures without abrogating its factor-dependence. , 1994, Oncogene.

[36]  T. Hawley,et al.  Versatile retroviral vectors for potential use in gene therapy. , 1994, Gene therapy.

[37]  T. Hawley,et al.  The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. , 1994, Oncogene.

[38]  A. Perkins,et al.  Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the Hox‐2.4 homeobox gene. , 1993, The EMBO journal.

[39]  S. Kamel‐Reid,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14) , 1991 .

[40]  T. Rabbitts,et al.  HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Lu,et al.  The tcl‐3 proto‐oncogene altered by chromosomal translocation in T‐cell leukemia codes for a homeobox protein. , 1991, The EMBO journal.

[42]  S. Korsmeyer,et al.  Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. , 1991, Science.

[43]  S. Raimondi,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). , 1991, Blood.

[44]  T. Gonda,et al.  Murine myeloid cell lines derived by in vitro infection with recombinant c‐myb retroviruses express myb from rearranged vector proviruses. , 1989, The EMBO journal.

[45]  J. Karn,et al.  Transformation of growth factor-dependent myeloid stem cells with retroviral vectors carrying c-myc. , 1989, Oncogene.

[46]  H. Karasuyama,et al.  Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors , 1988, European journal of immunology.

[47]  J. Ihle,et al.  Constitutive production of a unique lymphokine (IL 3) by the WEHI-3 cell line. , 1982, Journal of immunology.