Nature-inspired optimisation: Improvements to the Particle Swarm Optimisation Algorithm and the Bees Algorithm

This research focuses on nature-inspired optimisation algorithms, in particular, the Particle Swarm Optimisation (PSO) Algorithm and the Bees Algorithm. The PSO Algorithm is a population-based stochastic optimisation technique first invented in 1995. It was inspired by the social behaviour of birds flocking or a school of fish. The Bees Algorithm is a population-based search algorithm initially proposed in 2005. It mimics the food foraging behaviour of swarms of honey bees. The thesis presents three algorithms. The first algorithm called the PSO-Bees Algorithm is a cross between the PSO Algorithm and the Bees Algorithm. The PSO-Bees Algorithm enhanced the PSO Algorithm with techniques derived from the Bees Algorithm. The second algorithm called the improved Bees Algorithm is a version of the Bees Algorithm that incorporates techniques derived from the PSO Algorithm. The third algorithm called the SNTO-Bees Algorithm enhanced the Bees Algorithm using techniques derived from the Sequential Number-Theoretic Optimisation (SNTO) Algorithm. To demonstrate the capability of the proposed algorithms, they were applied to different optimisation problems. The PSO-Bees Algorithm is used to train neural networks for two problems, Control Chart Pattern Recognition and Wood Defect Classification. The results obtained and those from tests on well known benchmark functions provide an indication of the performance of the algorithm relative to that of other swarm-based stochastic optimisation algorithms. The improved Bees Algorithm was applied to mechanical design optimisation problems (design of welded beams and coil springs) and the mathematical benchmark problems used previously to test the PSO-Bees Algorithm. The algorithm incorporates cooperation and communication between different neighbourhoods. The results obtained show that the proposed cooperation and communication strategies adopted enhanced the performance and convergence of the algorithm. The SNTO-Bees Algorithm was applied to a set of mechanical design optimisation problems (design of welded beams, coil springs and pressure vessel) and mathematical benchmark functions used previously to test the PSO-Bees Algorithm and the improved Bees Algorithm. In addition, the algorithm was tested with a number of deceptive multi modal benchmark functions. The results obtained help to validate the SNTO-Bees Algorithm as an effective global optimiser capable of handling problems that are deceptive in nature with high dimensions.

[1]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[2]  Vladimiro Miranda,et al.  EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems , 2002, IEEE/PES Transmission and Distribution Conference and Exhibition.

[3]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[4]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[5]  Chuen-Sheng Cheng A multi-layer neural network model for detecting changes in the process mean , 1995 .

[6]  Hendrik Richter Behavior of Evolutionary Algorithms in Chaotically Changing Fitness Landscapes , 2004, PPSN.

[7]  B. Naudts,et al.  Epistasis and Deceptivity , 1999 .

[8]  Igor Aleksander,et al.  Introduction to Neural Computing , 1990 .

[9]  Graham Kendall,et al.  A Survey And Analysis Of Diversity Measures In Genetic Programming , 2002, GECCO.

[10]  Stephen R. Marsland,et al.  Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.

[11]  Renato A. Krohling,et al.  Gaussian particle swarm with jumps , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[14]  Martin Middendorf,et al.  Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP , 2001, EvoWorkshops.

[15]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[16]  Walter Cedeño,et al.  A comparison of particle swarms techniques for the development of quantitative structure-activity relationship models for drug design , 2005, 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05).

[17]  J. Salerno,et al.  Using the particle swarm optimization technique to train a recurrent neural model , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[18]  Saman K. Halgamuge,et al.  Particle Swarm Optimization with Self-Adaptive Acceleration Coefficients , 2002, FSKD.

[19]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[20]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[21]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[22]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[23]  M. Batouche,et al.  Hybrid particle swarm with differential evolution for multimodal image registration , 2004, 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04..

[24]  J. Deneubourg,et al.  Collective patterns and decision-making , 1989 .

[25]  T. Seeley,et al.  Modeling and analysis of nest-site selection by honeybee swarms: the speed and accuracy trade-off , 2005, Behavioral Ecology and Sociobiology.

[26]  Marc Toussaint,et al.  On Classes of Functions for which No Free Lunch Results Hold , 2001, Inf. Process. Lett..

[27]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[28]  Robert G. Reynolds,et al.  Using cultural algorithms to improve performance in semantic networks , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[29]  Duc Truong Pham,et al.  Intelligent quality systems , 1996, Advanced manufacturing series.

[30]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[31]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[32]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[33]  Yutian Liu,et al.  An adaptive PSO algorithm for reactive power optimization , 2003 .

[34]  Wenjun Zhang,et al.  Dissipative particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[35]  Arantxa Etxeverria The Origins of Order , 1993 .

[36]  B. Naudts,et al.  EPISTASIS ON FINITE AND INFINITE SPACES , 2007 .

[37]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[38]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[39]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[40]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[41]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[42]  Robert J. Schalkoff,et al.  Artificial neural networks , 1997 .

[43]  Igor V. Tetko,et al.  Neural network studies, 1. Comparison of overfitting and overtraining , 1995, J. Chem. Inf. Comput. Sci..

[44]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Ronald W. Morrison,et al.  Designing Evolutionary Algorithms for Dynamic Environments , 2004, Natural Computing Series.

[46]  Duc Truong Pham,et al.  The Bees Algorithm and Mechanical Design Optimisation , 2008, ICINCO-ICSO.

[47]  Shuyuan Yang,et al.  A quantum particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[48]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[49]  C.E. Zoumas,et al.  Comparison of two metaheuristics with mathematical programming methods for the solution of OPF , 2005, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems.

[50]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[51]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .

[52]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[53]  Shana Smith,et al.  Using multiple genetic operators to reduce premature convergence in genetic assembly planning , 2004, Comput. Ind..

[54]  Kevin D. Seppi,et al.  The Kalman Swarm: A New Approach to Particle Motion in Swarm Optimization , 2004, GECCO.

[55]  J. Deneubourg,et al.  How Trail Laying and Trail Following Can Solve Foraging Problems for Ant Colonies , 1990 .

[56]  Jürgen Branke Evolutionäre Optimierung dynamischer Probleme (Evolutionary Optimization in Dynamic Environments) , 2003, it Inf. Technol..

[57]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[58]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[59]  R.G. Harley,et al.  Multiple STATCOM Allocation and Sizing Using Particle Swarm Optimization , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[60]  James N. Siddall,et al.  Analytical decision-making in engineering design , 1972 .

[61]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[62]  Randall Davis,et al.  An overview of production systems , 1975 .

[63]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[64]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[65]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[66]  George C. Williams,et al.  PLEIOTROPY, NATURAL SELECTION, AND THE EVOLUTION OF SENESCENCE , 1957, Science of Aging Knowledge Environment.

[67]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[68]  D.T. Pham,et al.  Optimising Neural Networks for Identification of Wood Defects Using the Bees Algorithm , 2006, 2006 4th IEEE International Conference on Industrial Informatics.

[69]  Graham Kendall,et al.  Advanced Population Diversity Measures in Genetic Programming , 2002, PPSN.

[70]  Warren S. Sarle,et al.  Stopped Training and Other Remedies for Overfitting , 1995 .

[71]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[72]  Michael Sylvester Packianather,et al.  Comparison of neural and minimum distance classifiers in wood veneer defect identification , 2005 .

[73]  T. Stewart Extrema selection: accelerated evolution on neutral networks , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[74]  Dušan Teodorović,et al.  Bee Colony Optimization – a Cooperative Learning Approach to Complex Transportation Problems , 2005 .

[75]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[76]  Peter J. Bentley,et al.  Don't push me! Collision-avoiding swarms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[77]  Hajime Kita,et al.  Adaptation to Changing Environments by Means of the Memory Based Thermodynamical Genetic Algorithm , 1997, ICGA.

[78]  Albert Nigrin,et al.  Neural networks for pattern recognition , 1993 .

[79]  Phil Husbands,et al.  Fitness Landscapes and Evolvability , 2002, Evolutionary Computation.

[80]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[81]  E. Bornberg-Bauer,et al.  Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[83]  A. Groenwold,et al.  Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance , 2007 .

[84]  V. K. Jayaraman,et al.  Ant Colony Approach to Continuous Function Optimization , 2000 .

[85]  Andries P. Engelbrecht,et al.  Effects of swarm size on Cooperative Particle Swarm Optimisers , 2001 .

[86]  G. K. Venayagamoorthy,et al.  Optimal Design of a SVC Controller Using a Small Population Based PSO , .

[87]  G.K. Venayagamoorthy,et al.  Optimal design of power system stabilizers using a small population based PSO , 2006, 2006 IEEE Power Engineering Society General Meeting.

[88]  Thomas G. Dietterich Overfitting and undercomputing in machine learning , 1995, CSUR.

[89]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[90]  A. Wagner Robustness, evolvability, and neutrality , 2005, FEBS letters.

[91]  Teuvo Kohonen,et al.  The 'neural' phonetic typewriter , 1988, Computer.

[92]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[93]  M. Huynen Exploring phenotype space through neutral evolution , 1996, Journal of Molecular Evolution.

[94]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Antti J. Koivo,et al.  Robust image modeling for classification of surface defects on wood boards , 1989, IEEE Trans. Syst. Man Cybern..

[96]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[97]  M. Rockstein Bees. Their Vision, Chemical Senses, and Language , 1952 .

[98]  Jacek M. Zurada,et al.  Perturbation method for deleting redundant inputs of perceptron networks , 1997, Neurocomputing.

[99]  Nitin Muttil,et al.  Superior exploration-exploitation balance in shuffled complex evolution , 2004 .

[100]  Manoj Kumar Tiwari,et al.  Swarm Intelligence, Focus on Ant and Particle Swarm Optimization , 2007 .

[101]  Günter Rudolph,et al.  Self-adaptive mutations may lead to premature convergence , 2001, IEEE Trans. Evol. Comput..

[102]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[103]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[104]  Duc Truong Pham,et al.  Automatic Detection of Defects on Birch Wood Boards , 1996 .

[105]  Yuan Wang,et al.  Some Applications of Number-Theoretic Methods in Statistics , 1994 .

[106]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[107]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[108]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[109]  Vladimiro Miranda,et al.  EPSO - best-of-two-worlds meta-heuristic applied to power system problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[110]  Antti J. Koivo,et al.  Hierarchical classification of surface defects on dusty wood boards , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[111]  Gary B. Lamont,et al.  Visualizing particle swarm optimization - Gaussian particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[112]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[113]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[114]  Carlos A. Coello Coello,et al.  Engineering optimization using simple evolutionary algorithm , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[115]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[116]  Ercan Oztemel,et al.  Control chart pattern recognition using neural networks , 1992 .

[117]  J. Rowe,et al.  Particle SwarmOptimization andFitness Sharing tosolve Multi-Objective Optimization Problems , 2005 .

[118]  Liyan Zhang,et al.  Empirical study of particle swarm optimizer with an increasing inertia weight , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[119]  Vladimiro Miranda,et al.  NEW EVOLUTIONARY PARTICLE SWARM ALGORITHM (EPSO) APPLIED TO VOLTAGE/VAR CONTROL , 2002 .

[120]  C. Lee Giles,et al.  Overfitting and neural networks: conjugate gradient and backpropagation , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[121]  J. Deneubourg,et al.  Probabilistic behaviour in ants: A strategy of errors? , 1983 .

[122]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[123]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[124]  Ganesh K. Venayagamoorthy,et al.  Optimal PSO for collective robotic search applications , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[125]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[126]  Rainer Laur,et al.  Stopping Criteria for a Constrained Single-Objective Particle Swarm Optimization Algorithm , 2007, Informatica.

[127]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[128]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[129]  Muddassar Farooq Bio-inspired telecommunications , 2009, GECCO '09.

[130]  Günter Rudolph,et al.  Self-adaptation and global convergence: a counter-example , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[131]  Sébastien Vérel,et al.  Deceptiveness and neutrality the ND family of fitness landscapes , 2006, GECCO.

[132]  Konstantinos G. Margaritis,et al.  Performance comparison of memetic algorithms , 2004, Appl. Math. Comput..

[133]  N. Packard,et al.  Neutral Search Spaces for Artificial Evolution: A Lesson From Life , 2000 .

[134]  Barry Hilary Valentine Topping,et al.  Improved genetic operators for structural engineering optimization , 1998 .

[135]  Murat Kunt,et al.  Differential Evolution Applied to a Multimodal Information Theoretic Optimization Problem , 2006, EvoWorkshops.

[136]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[137]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[138]  Gerry Dozier,et al.  Adapting Particle Swarm Optimizationto Dynamic Environments , 2001 .

[139]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[140]  Susana Cecilia Esquivel,et al.  An Evolutionary Algorithm to Track Changes of Optimum Value Locations in Dynamic Environments , 2004 .

[141]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[142]  田口 玄一,et al.  Introduction to quality engineering : designing quality into products and processes , 1986 .

[143]  Tapabrata Ray,et al.  A socio-behavioural simulation model for engineering design optimization , 2002 .

[144]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[145]  David H. Wolpert,et al.  Remarks on a recent paper on the "no free lunch" theorems , 2001, IEEE Trans. Evol. Comput..

[146]  Yi-zeng Liang,et al.  An Improved Optimization Strategy and Its Application to Clustering Analysis , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[147]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[148]  N. Franks,et al.  A path choice algorithm for ants , 1992, Naturwissenschaften.

[149]  Tomas Velasco,et al.  Back propagation artificial neural networks for the analysis of quality control charts , 1993 .

[150]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[151]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1993 .

[152]  W. Michael Rudnick Genetic algorithms and fitness variance with an application to the automated design of neural netoworks , 1992 .

[153]  T. Krink,et al.  Particle swarm optimisation with spatial particle extension , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[154]  Radhika Nagpal,et al.  Extended stigmergy in collective construction , 2006, IEEE Intelligent Systems.

[155]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[156]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[157]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[158]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[159]  E. Prempain,et al.  An improved particle swarm optimization for optimal power flow , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[160]  Krishna Chandramouli Image Classification using particle swarm optimisation , 2008 .

[161]  Yoshikazu Fukuyama,et al.  A hybrid particle swarm optimization for distribution state estimation , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[162]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[163]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[164]  Lehrstuhl für Elektrische,et al.  Gaussian swarm: a novel particle swarm optimization algorithm , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[165]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[166]  Arvind S. Mohais,et al.  DynDE: a differential evolution for dynamic optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[167]  P. Phillips The language of gene interaction. , 1998, Genetics.

[168]  Stephen R. Luke,et al.  Training artificial neural networks for statistical process control , 1993, [1993] Proceedings of the Tenth Biennial University/Government/Industry Microelectronics Symposium.

[169]  A. Sima Etaner-Uyar,et al.  Towards an analysis of dynamic environments , 2005, GECCO '05.

[170]  L. S. Nelson,et al.  The Nelder-Mead Simplex Procedure for Function Minimization , 1975 .

[171]  Robert G. Reynolds,et al.  Cultural algorithms: theory and applications , 1999 .

[172]  Ponnuthurai N. Suganthan,et al.  A novel concurrent particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[173]  Duc Truong Pham,et al.  Automated grading and defect detection : a review , 1998 .

[174]  J. Lush Progeny Test and Individual Performance as Indicators of an Animal's Breeding Value , 1935 .

[175]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[176]  N. P. Padhy,et al.  Application of particle swarm optimization technique and its variants to generation expansion planning problem , 2004 .

[177]  John H. Holland,et al.  Cognitive systems based on adaptive algorithms , 1977, SGAR.

[178]  H. Niederreiter,et al.  Localization of Search in Quasi-Monte Carlo Methods for Global Optimization , 1986 .

[179]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[180]  Charles X. Ling,et al.  Overfitting and generalization in learning discrete patterns , 1995, Neurocomputing.

[181]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[182]  E. Galperin Pareto Analysis vis-à-vis Balance Space Approach in Multiobjective Global Optimization , 1997 .

[183]  Marcus Randall,et al.  A survey of ant colony and particle swarm meta-heuristics and their application to discrete optimisation problems , 2001 .

[184]  Afshin Ghanbarzadeh,et al.  the Bees Algorithm: a novel optimisation tool , 2007 .

[185]  William Bateson,et al.  Mendel's Principles of Heredity , 1909, Archiv für Entwicklungsmechanik der Organismen.

[186]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[187]  Gunar E. Liepins,et al.  Deceptiveness and Genetic Algorithm Dynamics , 1990, FOGA.

[188]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[189]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[190]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[191]  Drew Fudenberg,et al.  Game theory (3. pr.) , 1991 .

[192]  Cho-Li Wang,et al.  A New Asynchronous Parallel Evolutionary Algorithm for Function Optimization , 2002, PPSN.

[193]  Duc Truong Pham,et al.  Recent Developments in Automated Visual Inspection of Wood Boards , 1999 .

[194]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[195]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[196]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[197]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[198]  J. S. Vesterstrom,et al.  Division of labor in particle swarm optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[199]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[200]  Babak Nadjar Araabi,et al.  Intelligent Particle Swarm Optimization Using Q-Learning , 2006 .

[201]  Bart Naudts,et al.  Generalized Royal Road Functions and Their Epistasis , 2000, Comput. Artif. Intell..

[202]  Larry J. Eshelman,et al.  Spurious Correlations and Premature Convergence in Genetic Algorithms , 1990, FOGA.

[203]  T. Ray Constrained robust optimal design using a multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[204]  Jouko Lampinen,et al.  Wood Defect Recognition: A Comparative Study , 1994 .

[205]  Thomas Jansen,et al.  A comparison of simulated annealing with a simple evolutionary algorithm on pseudo-boolean functions of unitation , 2007, Theor. Comput. Sci..