Adaptive Population Sizing Schemes in Genetic Algorithms

Summary. This chapter presents a review of adaptive population sizing schemes used in genetic algorithms. We start by briefly revisiting theoretical models which rely on a facetwise design decomposition, and then move on to various self-adjusting population sizing schemes that have been proposed in the literature. For each method, the major advantages and disadvantages are discussed. The chapter ends with recommendations for those who design and compare self-adjusting population sizing mechanisms for genetic and evolutionary algorithms.

[1]  Heinz Mühlenbein,et al.  Strategy Adaption by Competing Subpopulations , 1994, PPSN.

[2]  C. Fernandes,et al.  A study on non-random mating and varying population size in genetic algorithms using a royal road function , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Cláudio F. Lima,et al.  Revisiting evolutionary algorithms with on-the-fly population size adjustment , 2006, GECCO '06.

[4]  Martin Pelikan,et al.  Parameter-Less Hierarchical BOA , 2004, GECCO.

[5]  Robert E. Smith,et al.  Adaptively Resizing Populations: Algorithm, Analysis, and First Results , 1993, Complex Syst..

[6]  Robert E. Smith,et al.  Adaptively Resizing Populations: An Algorithm and Analysis , 1993, ICGA.

[7]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[8]  Elena Marchiori,et al.  Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.

[9]  David E. Goldberg,et al.  Designing Competent Mutation Operators Via Probabilistic Model Building of Neighborhoods , 2004, GECCO.

[10]  David E. Goldberg,et al.  Genetic Algorithm Design Inspired by Organizational Theory: Pilot Study of a Dependency Structure Matrix Driven Genetic Algorithm , 2003, GECCO.

[11]  Thomas Bäck,et al.  An Empirical Study on GAs "Without Parameters" , 2000, PPSN.

[12]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[13]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[14]  David E. Goldberg,et al.  Time Complexity of genetic algorithms on exponentially scaled problems , 2000, GECCO.

[15]  Martin Pelikan,et al.  Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.

[16]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[17]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.

[18]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[19]  David E. Goldberg,et al.  The parameter-less genetic algorithm in practice , 2004, Inf. Sci..

[20]  David E. Goldberg,et al.  Online population size adjusting using noise and substructural measurements , 2005, 2005 IEEE Congress on Evolutionary Computation.

[21]  Zbigniew Michalewicz,et al.  Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.

[22]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[23]  K. Dejong,et al.  An Analysis Of The Behavior Of A Class Of Genetic Adaptive Systems , 1975 .

[24]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[25]  Cláudio F. Lima,et al.  Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search , 2004, GECCO.

[26]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[27]  John H. Holland,et al.  Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..

[28]  Heinz Mühlenbein,et al.  Adaptation of population sizes by competing subpopulations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[29]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[30]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[31]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.