Adaptive Population Sizing Schemes in Genetic Algorithms
暂无分享,去创建一个
[1] Heinz Mühlenbein,et al. Strategy Adaption by Competing Subpopulations , 1994, PPSN.
[2] C. Fernandes,et al. A study on non-random mating and varying population size in genetic algorithms using a royal road function , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[3] Cláudio F. Lima,et al. Revisiting evolutionary algorithms with on-the-fly population size adjustment , 2006, GECCO '06.
[4] Martin Pelikan,et al. Parameter-Less Hierarchical BOA , 2004, GECCO.
[5] Robert E. Smith,et al. Adaptively Resizing Populations: Algorithm, Analysis, and First Results , 1993, Complex Syst..
[6] Robert E. Smith,et al. Adaptively Resizing Populations: An Algorithm and Analysis , 1993, ICGA.
[7] Zbigniew Michalewicz,et al. GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[8] Elena Marchiori,et al. Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.
[9] David E. Goldberg,et al. Designing Competent Mutation Operators Via Probabilistic Model Building of Neighborhoods , 2004, GECCO.
[10] David E. Goldberg,et al. Genetic Algorithm Design Inspired by Organizational Theory: Pilot Study of a Dependency Structure Matrix Driven Genetic Algorithm , 2003, GECCO.
[11] Thomas Bäck,et al. An Empirical Study on GAs "Without Parameters" , 2000, PPSN.
[12] Kalyanmoy Deb,et al. Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..
[13] David E. Goldberg,et al. A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..
[14] David E. Goldberg,et al. Time Complexity of genetic algorithms on exponentially scaled problems , 2000, GECCO.
[15] Martin Pelikan,et al. Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.
[16] E. Cantu-Paz,et al. The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.
[17] David E. Goldberg,et al. Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.
[18] D. Goldberg,et al. Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[19] David E. Goldberg,et al. The parameter-less genetic algorithm in practice , 2004, Inf. Sci..
[20] David E. Goldberg,et al. Online population size adjusting using noise and substructural measurements , 2005, 2005 IEEE Congress on Evolutionary Computation.
[21] Zbigniew Michalewicz,et al. Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.
[22] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[23] K. Dejong,et al. An Analysis Of The Behavior Of A Class Of Genetic Adaptive Systems , 1975 .
[24] David E. Goldberg,et al. The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .
[25] Cláudio F. Lima,et al. Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search , 2004, GECCO.
[26] David E. Goldberg,et al. Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..
[27] John H. Holland,et al. Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..
[28] Heinz Mühlenbein,et al. Adaptation of population sizes by competing subpopulations , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[29] David E. Goldberg,et al. Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..
[30] Fernando G. Lobo,et al. A parameter-less genetic algorithm , 1999, GECCO.
[31] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.