Electrochemically Triggered Co-Conformational Switching in a [2]catenane Comprising a Non-Symmetric Calix[6]arene Wheel and a Two-Station Oriented Macrocycle

Catenanes with desymmetrized ring components can undergo co-conformational rearrangements upon external stimulation and can form the basis for the development of molecular rotary motors. We describe the design, synthesis and properties of a [2]catenane consisting of a macrocycle—the ‘track’ ring—endowed with two distinct recognition sites (a bipyridinium and an ammonium) for a calix[6]arene—the ‘shuttle’ ring. By exploiting the ability of the calixarene to thread appropriate non-symmetric axles with directional selectivity, we assembled an oriented pseudorotaxane and converted it into the corresponding oriented catenane by intramolecular ring closing metathesis. Cyclic voltammetric experiments indicate that the calixarene wheel initially surrounds the bipyridinium site, moves away from it when it is reduced, and returns in the original position upon reoxidation. A comparison with appropriate model compounds shows that the presence of the ammonium station is necessary for the calixarene to leave the reduced bipyridinium site.

[1]  E. Wasserman,et al.  THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .

[2]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[3]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[4]  F. Vögtle,et al.  One‐Step Synthesis of a Fourfold Functionalized Catenane , 1992 .

[5]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[6]  David A. Leigh,et al.  Facile Synthesis and Solid-State Structure of a Benzylic Amide [2]Catenane† , 1995 .

[7]  Christopher L. Brown,et al.  CONTROLLING CATENATIONS, PROPERTIES AND RELATIVE RING-COMPONENT MOVEMENTS IN CATENANES WITH AROMATIC FLUORINE SUBSTITUENTS , 1997 .

[8]  Thomas A. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[9]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[10]  T. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[11]  David A. Leigh,et al.  Organic “Magic Rings”: The Hydrogen Bond-Directed Assembly of Catenanes under Thermodynamic Control , 1999 .

[12]  R. Grubbs,et al.  Synthesis of Catenane Structures via Ring-Closing Metathesis. , 1999, The Journal of organic chemistry.

[13]  David J. Williams,et al.  Pseudorotaxanes and Catenanes Containing a Redox‐Active Unit Derived from Tetrathiafulvalene , 1999 .

[14]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[15]  A. Secchi,et al.  Unidirectional threading of triphenylureidocalix[6]arene-based wheels: oriented pseudorotaxane synthesis. , 2003, Chemistry.

[16]  Alberto Credi,et al.  Viologen-calix[6]arene pseudorotaxanes. Ion-pair recognition and threading/dethreading molecular motions. , 2004, The Journal of organic chemistry.

[17]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[18]  J. F. Stoddart,et al.  Magic ring catenation by olefin metathesis. , 2005, Organic letters.

[19]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[20]  É. Cloutet,et al.  Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction. , 2008, Journal of the American Chemical Society.

[21]  A. Credi,et al.  Rotaxanes with a calix[6]arene wheel and axles of different length. Synthesis, characterization, and photophysical and electrochemical properties , 2008 .

[22]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[23]  Douglas C. Friedman,et al.  A push-button molecular switch. , 2009, Journal of the American Chemical Society.

[24]  J. F. Stoddart,et al.  The Chemistry of the Mechanical Bond , 2009 .

[25]  A. Credi,et al.  Towards controlling the threading direction of a calix[6]arene wheel by using nonsymmetric axles. , 2009, Chemistry.

[26]  M. Amelia,et al.  Probing donor-acceptor interactions and co-conformational changes in redox active desymmetrized [2]catenanes. , 2010, Journal of the American Chemical Society.

[27]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[28]  C. Gaeta,et al.  Catenation of calixarene annulus. , 2013, Organic letters.

[29]  A. Credi,et al.  Calix-Based Molecular Machines and Devices , 2013 .

[30]  A. Credi,et al.  Toward directionally controlled molecular motions and kinetic intra- and intermolecular self-sorting: threading processes of nonsymmetric wheel and axle components. , 2013, Journal of the American Chemical Society.

[31]  A. Credi,et al.  Electroactive [2]catenanes , 2014 .

[32]  P. Beer,et al.  Advances in Anion Supramolecular Chemistry: From Recognition to Chemical Applications , 2015 .

[33]  David A Leigh,et al.  Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.

[34]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[35]  Nicolaas A. Vermeulen,et al.  Catenation through a Combination of Radical Templation and Ring-Closing Metathesis. , 2015, Journal of the American Chemical Society.

[36]  Zheng Meng,et al.  Stepwise Motion in a Multivalent [2](3)Catenane. , 2015, Journal of the American Chemical Society.

[37]  D. Leigh,et al.  An autonomous chemically fuelled small-molecule motor , 2016, Nature.

[38]  Kai Wang,et al.  Facile syntheses of [3]-, [4]- and [6]catenanes templated by orthogonal supramolecular interactions† †Electronic supplementary information (ESI) available: Synthetic procedures, NMR, MS, HPLC and UV-Vis data. See DOI: 10.1039/c5sc04774a , 2016, Chemical science.

[39]  A. Credi,et al.  Calixarene Threading by Viologen-Based Axles , 2016 .

[40]  A. Credi,et al.  Synthesis by ring closing metathesis and properties of an electroactive calix[6]arene [2]catenane , 2016 .

[41]  Daniel J. Tetlow,et al.  Rotary and linear molecular motors driven by pulses of a chemical fuel , 2017, Science.

[42]  M. Baroncini,et al.  Making and Operating Molecular Machines: A Multidisciplinary Challenge , 2018, ChemistryOpen.

[43]  S. Silvi,et al.  Redox-Switchable Calix[6]arene-Based Isomeric Rotaxanes. , 2018, Chemistry.