Model selection in sparse high-dimensional vine copula models with an application to portfolio risk

Vine copulas allow to build flexible dependence models for an arbitrary number of variables using only bivariate building blocks. The number of parameters in a vine copula model increases quadratically with the dimension, which poses new challenges in high-dimensional applications. To alleviate the computational burden and risk of overfitting, we propose a modified Bayesian information criterion (BIC) tailored to sparse vine copula models. We show that the criterion can consistently distinguish between the true and alternative models under less stringent conditions than the classical BIC. The new criterion can be used to select the hyper-parameters of sparse model classes, such as truncated and thresholded vine copulas. We propose a computationally efficient implementation and illustrate the benefits of the new concepts with a case study where we model the dependence in a large stock stock portfolio.

[1]  Fabian Spanhel,et al.  Simplified vine copula models: Approximations based on the simplifying assumption , 2015, Electronic Journal of Statistics.

[2]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[3]  Jiahua Chen,et al.  Extended Bayesian information criteria for model selection with large model spaces , 2008 .

[4]  Claudia Czado,et al.  Growing simplified vine copula trees: improving Di{\ss}mann's algorithm , 2017, 1703.05203.

[5]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[6]  Chenlei Leng,et al.  Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .

[7]  H. Joe Dependence Modeling with Copulas , 2014 .

[8]  Dorota Kurowicka,et al.  Optimal Truncation of Vines , 2010 .

[9]  Paul Embrechts,et al.  The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis , 2010, ASTIN Bulletin.

[10]  Claudia Czado,et al.  Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..

[11]  Ingrid Hobæk Haff,et al.  Parameter estimation for pair-copula constructions , 2013, 1303.4890.

[12]  Irène Gijbels,et al.  Partial and average copulas and association measures , 2015 .

[13]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[14]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[15]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[16]  Ulrike Wachsmann,et al.  With contribution from , 2010 .

[17]  Tao Wang,et al.  Consistent tuning parameter selection in high dimensional sparse linear regression , 2011, J. Multivar. Anal..

[18]  R. Nelsen An Introduction to Copulas , 1998 .

[19]  Lan Wang,et al.  GEE analysis of clustered binary data with diverging number of covariates , 2011, 1103.1795.

[20]  C. Czado,et al.  Truncated regular vines in high dimensions with application to financial data , 2012 .

[21]  Fabian Spanhel,et al.  Testing the simplifying assumption in high-dimensional vine copulas , 2017 .

[22]  C. Genest,et al.  ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS , 2011 .

[23]  H. Zou,et al.  Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas , 2014 .

[24]  Fabian Spanhel,et al.  The partial copula: Properties and associated dependence measures , 2015, 1511.06665.

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[27]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[28]  Malgorzata Bogdan,et al.  Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models , 2011, Comput. Stat. Data Anal..

[29]  H. Akaike A new look at the statistical model identification , 1974 .

[30]  Fabian Spanhel,et al.  The partial vine copula: A dependence measure and approximation based on the simplifying assumption , 2015, 1510.06971.

[31]  J. Ghosh,et al.  Modifying the Schwarz Bayesian Information Criterion to Locate Multiple Interacting Quantitative Trait Loci , 2004, Genetics.

[32]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[33]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[34]  Christian Genest,et al.  Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..

[35]  Thibault Vatter,et al.  Generalized Additive Models for Pair-Copula Constructions , 2016, Journal of Computational and Graphical Statistics.

[36]  Harry Joe,et al.  Truncation of vine copulas using fit indices , 2015, J. Multivar. Anal..

[37]  Claudia Czado,et al.  Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .

[38]  Yingying Fan,et al.  Tuning parameter selection in high dimensional penalized likelihood , 2013, 1605.03321.

[39]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[40]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .

[41]  Claudia Czado,et al.  Selection of sparse vine copulas in high dimensions with the Lasso , 2019, Stat. Comput..

[42]  Claudia Czado,et al.  Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..

[43]  Kjersti Aas,et al.  Pair-Copula Constructions for Financial Applications: A Review , 2016 .

[44]  Hua Liang,et al.  Corrigendum to “Maximum likelihood estimation in logistic regression models with a diverging number of covariates” , 2023, Electronic Journal of Statistics.