Model selection in sparse high-dimensional vine copula models with an application to portfolio risk
暂无分享,去创建一个
[1] Fabian Spanhel,et al. Simplified vine copula models: Approximations based on the simplifying assumption , 2015, Electronic Journal of Statistics.
[2] Jianqing Fan,et al. Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.
[3] Jiahua Chen,et al. Extended Bayesian information criteria for model selection with large model spaces , 2008 .
[4] Claudia Czado,et al. Growing simplified vine copula trees: improving Di{\ss}mann's algorithm , 2017, 1703.05203.
[5] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[6] Chenlei Leng,et al. Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .
[7] H. Joe. Dependence Modeling with Copulas , 2014 .
[8] Dorota Kurowicka,et al. Optimal Truncation of Vines , 2010 .
[9] Paul Embrechts,et al. The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis , 2010, ASTIN Bulletin.
[10] Claudia Czado,et al. Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..
[11] Ingrid Hobæk Haff,et al. Parameter estimation for pair-copula constructions , 2013, 1303.4890.
[12] Irène Gijbels,et al. Partial and average copulas and association measures , 2015 .
[13] R. Nelsen. An Introduction to Copulas (Springer Series in Statistics) , 2006 .
[14] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[15] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[16] Ulrike Wachsmann,et al. With contribution from , 2010 .
[17] Tao Wang,et al. Consistent tuning parameter selection in high dimensional sparse linear regression , 2011, J. Multivar. Anal..
[18] R. Nelsen. An Introduction to Copulas , 1998 .
[19] Lan Wang,et al. GEE analysis of clustered binary data with diverging number of covariates , 2011, 1103.1795.
[20] C. Czado,et al. Truncated regular vines in high dimensions with application to financial data , 2012 .
[21] Fabian Spanhel,et al. Testing the simplifying assumption in high-dimensional vine copulas , 2017 .
[22] C. Genest,et al. ESTIMATORS BASED ON KENDALL'S TAU IN MULTIVARIATE COPULA MODELS , 2011 .
[23] H. Zou,et al. Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas , 2014 .
[24] Fabian Spanhel,et al. The partial copula: Properties and associated dependence measures , 2015, 1511.06665.
[25] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[26] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[27] Nils Lid Hjort,et al. Model Selection and Model Averaging , 2001 .
[28] Malgorzata Bogdan,et al. Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models , 2011, Comput. Stat. Data Anal..
[29] H. Akaike. A new look at the statistical model identification , 1974 .
[30] Fabian Spanhel,et al. The partial vine copula: A dependence measure and approximation based on the simplifying assumption , 2015, 1510.06971.
[31] J. Ghosh,et al. Modifying the Schwarz Bayesian Information Criterion to Locate Multiple Interacting Quantitative Trait Loci , 2004, Genetics.
[32] Peter F. Christoffersen. Evaluating Interval Forecasts , 1998 .
[33] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[34] Christian Genest,et al. Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..
[35] Thibault Vatter,et al. Generalized Additive Models for Pair-Copula Constructions , 2016, Journal of Computational and Graphical Statistics.
[36] Harry Joe,et al. Truncation of vine copulas using fit indices , 2015, J. Multivar. Anal..
[37] Claudia Czado,et al. Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .
[38] Yingying Fan,et al. Tuning parameter selection in high dimensional penalized likelihood , 2013, 1605.03321.
[39] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[40] J. Zakoian,et al. GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .
[41] Claudia Czado,et al. Selection of sparse vine copulas in high dimensions with the Lasso , 2019, Stat. Comput..
[42] Claudia Czado,et al. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..
[43] Kjersti Aas,et al. Pair-Copula Constructions for Financial Applications: A Review , 2016 .
[44] Hua Liang,et al. Corrigendum to “Maximum likelihood estimation in logistic regression models with a diverging number of covariates” , 2023, Electronic Journal of Statistics.