Discovering Technicolor

We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low-energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.

[1]  Dynamical Stabilization of the Fermi Scale: Phase Diagram of Strongly Coupled Theories for (Minimal) Walking Technicolor and Unparticles , 2008, 0804.0182.

[2]  R. Shrock,et al.  Behavior of the S parameter in the crossover region between walking and QCD-like regimes of an SU(N) gauge theory , 2006, hep-ph/0607231.

[3]  M. Goebel,et al.  Revisiting the global electroweak fit of the Standard Model and beyond with Gfitter , 2008 .

[4]  R. Shrock,et al.  Generational Structure of Models with Dynamical Symmetry Breaking , 2010, 1004.2075.

[5]  R. Sundrum,et al.  Walking technicolor and electroweak radiative corrections , 1992, hep-ph/9206225.

[6]  B. Allanach,et al.  Detecting Exotic Heavy Leptons at the Large Hadron Collider , 2001 .

[7]  F. Sannino,et al.  Fourth Lepton Family is Natural in Technicolor , 2009, 0905.1331.

[8]  T. Han,et al.  The Search for Heavy Majorana Neutrinos , 2009, 0901.3589.

[9]  Alexander Belyaev,et al.  Phenomenology of the minimal B-L extension of the Standard model: Z' and neutrinos , 2008, 0812.4313.

[10]  S. Sultansoy,et al.  Four statements about the fourth generation , 2009, 0904.4698.

[11]  Francesco Sannino,et al.  Conformal window of SU(N) gauge theories with fermions in higher dimensional representations , 2007 .

[12]  A. V. Semenov,et al.  LanHEP - a package for the automatic generation of Feynman rules in field theory. Version 3.0 , 2002, Comput. Phys. Commun..

[13]  Infrared evolution and phase structure of a gauge theory containing different fermion representations , 2010 .

[14]  Alexander Pukhov,et al.  CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages , 2004, hep-ph/0412191.

[15]  Edward Farhi,et al.  Grand unified theory with heavy color , 1979 .

[16]  Technifermion representations and precision electroweak constraints , 2005, hep-ph/0509109.

[17]  K. Tuominen,et al.  Weakly interacting dark matter particle of a minimal technicolor theory , 2007 .

[18]  Tilman Plehn,et al.  Four generations and Higgs physics , 2007, 0706.3718.

[19]  Francesco Sannino,et al.  Ultraminimal technicolor and its dark matter technicolor interacting massive particles , 2008 .

[20]  ℓWν production at CLIC: a window to TeV scale non-decoupled neutrinos , 2005, hep-ph/0503026.

[21]  M. Chanowitz Electroweak Symmetry Breaking: Unitarity, Dynamics, and Experimental Prospects , 1988 .

[22]  P. D. Silva,et al.  Light composite Higgs from an effective action for technicolor , 2008, 0802.1898.

[23]  Mikhail Dubinin,et al.  CompHEP - a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User's manual for version 33 , 1999 .

[24]  Search for `invisible' Higgs signals at LHC via associated production with gauge bosons , 2003, hep-ph/0304137.

[25]  London,et al.  Beyond S, T, and U. , 1993, Physical review. D, Particles and fields.

[26]  The Physical spectrum of conformal SU(N) gauge theories , 1998, hep-ph/9806409.

[27]  M. Hauschild,et al.  Search for invisibly decaying Higgs bosons with large decay width using the OPAL detector at LEP , 2006, hep-ex/0610056.

[28]  Bando,et al.  Scale-invariant hypercolor model and a dilaton. , 1986, Physical review letters.

[29]  A. Zerwekh Associate Higgs and gauge boson production at hadron colliders in a model with vector resonances , 2005, hep-ph/0512261.

[30]  E. al.,et al.  Combined Tevatron upper limit on gg→H→W+W- and constraints on the Higgs boson mass in fourth-generation fermion models , 2010, 1005.3216.

[31]  G. Altarelli New Physics and the LHC , 2008, 0805.1992.

[32]  Kennedy,et al.  Precision electroweak experiments and heavy physics: A global analysis. , 1990, Physical review letters.

[33]  M. Frandsen,et al.  Technicolor dark matter , 2008, 0812.3406.

[34]  Light composite Higgs boson from higher representations versus electroweak precision measurements: P , 2005, hep-ph/0505059.

[35]  Francesco Sannino,et al.  Alternative Large Nc Schemes and Chiral Dynamics , 2007, 0704.0602.

[36]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[37]  L. Debbio,et al.  Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions , 2008, 0805.2058.

[38]  G. Giudice Theories for the fermi scale , 2007, 0710.3294.

[39]  M. Scadron,et al.  Comment on 'Two-photon decay width of the sigma meson' , 2008, 0811.2589.

[40]  Unitarized pseudoscalar meson scattering amplitudes from three flavor linear sigma models , 2000, hep-ph/0012278.

[41]  R. Shrock,et al.  Higher extended technicolor representations and fermion generations , 2011 .

[42]  K. F. Chen,et al.  From the LHC to future colliders , 2009, 0909.3240.

[43]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[44]  Elizabeth H. Simmons,et al.  Strong dynamics and electroweak symmetry breaking , 2002, hep-ph/0203079.

[45]  Heavy neutrino signals at large hadron colliders , 2007, hep-ph/0703261.

[46]  Universal non-oblique corrections in Higgsless models and beyond , 2004, hep-ph/0408262.

[47]  G. Altarelli,et al.  Vacuum polarization effects of new physics on electroweak processes , 1991 .

[48]  Francesco Sannino,et al.  Beta function and anomalous dimensions , 2010, 1011.3832.

[49]  E. Witten An SU(2) anomaly , 1982 .

[50]  G. Altarelli Particle Physics at the LHC Start , 2009, 1010.5637.

[51]  M. Pennington Sigma coupling to photons: hidden scalar in gammagamma --> pi0pi0. , 2006, Physical review letters.

[52]  D. K. Hong,et al.  Composite Higgs from higher representations , 2004, hep-ph/0406200.

[53]  How can a heavy Higgs boson be consistent with the precision electroweak measurements , 2001, hep-ph/0101342.

[54]  C. Collard,et al.  CP Studies and Non-Standard Higgs Physics , 2006 .

[55]  E. Eichten,et al.  Two Scale Technicolor , 1989 .

[56]  Francesco Sannino,et al.  Conformal window of gauge theories with four-fermion interactions and ideal walking technicolor , 2010, 1005.3340.

[57]  Claude Duhr,et al.  A comprehensive approach to new physics simulations , 2009, 0906.2474.

[58]  T. Gutsche,et al.  Two-photon decay width of the sigma meson , 2007, 0710.3403.

[59]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[60]  Steven Weinberg,et al.  Implications of dynamical symmetry breaking: An addendum , 1979 .

[61]  A. Pukhov,et al.  Technicolor walks at the LHC , 2008, 0809.0793.

[62]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[63]  Riccardo Barbieri,et al.  Electroweak symmetry breaking after LEP1 and LEP2 , 2004, hep-ph/0405040.

[64]  A. C. Kraan,et al.  Stable massive particles at colliders , 2007 .

[65]  A. Sherstnev,et al.  New Physics at the LHC: A Les Houches Report. Physics at Tev Colliders 2007 - New Physics Working Group , 2008, 1005.1229.

[66]  K. Tuominen,et al.  Unnatural origin of fermion masses for technicolor , 2009, 0910.3681.

[67]  Andrea Romanino,et al.  Erratum to: "Split supersymmetry" [Nucl. Phys. B 699 (2004) 65] , 2005 .

[68]  Simple description of pi pi scattering to 1 GeV. , 1995, Physical review. D, Particles and fields.

[69]  M. Frandsen,et al.  Minimal walking technicolor: Setup for collider physics , 2007, 0706.1696.

[70]  Orientifold theory dynamics and symmetry breaking , 2004, hep-ph/0405209.

[71]  Francesco Sannino,et al.  Unitarity in Technicolor , 2008, 0811.3719.

[72]  Francesco Sannino Conformal Dynamics for TeV Physics and Cosmology , 2009, 0911.0931.

[73]  V. Ozcan,et al.  Fourth Family Neutrinos and the Higgs Boson , 2008, 0806.4003.

[74]  Dynamical electroweak symmetry breaking from deformed AdS space: Vector mesons and effective couplings , 2008, 0804.0124.

[75]  M. Mangano UNDERSTANDING THE STANDARD MODEL, AS A BRIDGE TO THE DISCOVERY OF NEW PHENOMENA AT THE LHC , 2008, 0802.0026.

[76]  E. al.,et al.  Global search for new physics with 2.0 fb(-1) at CDF , 2008, 0809.3781.

[77]  G. Altarelli Status of Neutrino Masses and Mixing in 2010 , 2009, 1011.5342.

[78]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[79]  R. Shrock,et al.  Ultraviolet extension of a model with dynamical electroweak symmetry breaking by both top-quark and technifermion condensates , 2010, 1006.5477.

[80]  Large N c and chiral dynamics , 2003, hep-ph/0309206.

[81]  J. A. Aguilar-Saavedra,et al.  Like-sign dilepton signals from a leptophobic Z' boson , 2007, 0705.4117.

[82]  Francesco Sannino,et al.  MINIMAL FLAVOR CONSTRAINTS FOR TECHNICOLOR , 2009, 0908.2424.

[83]  P. Bartalini,et al.  A standard format for Les Houches Event Files , 2007, Comput. Phys. Commun..

[84]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[85]  Francesco Sannino,et al.  Supersymmetry inspired QCD beta function , 2007, 0711.3745.

[86]  T. Appelquist,et al.  Chiral hierarchies and flavor-changing neutral currents in hypercolor. , 1986, Physical review letters.

[87]  L. Susskind,et al.  Mass Without Scalars , 1979 .

[88]  A. Belyaev,et al.  CERN LHC signatures of new gauge bosons in the minimal Higgsless model , 2007, 0708.2588.

[89]  K. Tuominen,et al.  Minimal supersymmetric technicolor , 2010, 1001.2040.

[90]  E. Eichten,et al.  Dynamical breaking of weak interaction symmetries , 1980 .

[91]  Gatto,et al.  Low energy strong electroweak sector with decoupling. , 1996, Physical review. D, Particles and fields.

[92]  M. Goebel,et al.  Erratum to: Revisiting the global electroweak fit of the Standard Model and beyond with Gfitter , 2008, 0811.0009.

[93]  Signatures for Majorana neutrinos at hadron colliders. , 2006, Physical review letters.

[94]  B. Holdom Raising the sideways scale , 1981 .

[95]  Dimitri Debruyne,et al.  A(e,e'p) reactions at GeV energies , 2002 .

[96]  W. Keung,et al.  Long lived fourth generation and the Higgs , 2011, 1103.3765.

[97]  Tim Stelzer,et al.  MadGraph/MadEvent v4: The New Web Generation , 2007, 0706.2334.