Correspondence between frame shrinkage and high-order nonlinear diffusion

[1]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[2]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[5]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[6]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[7]  L. Villemoes Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .

[8]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[9]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[10]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[11]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[12]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[13]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[14]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[15]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[16]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[17]  S. Mallat A wavelet tour of signal processing , 1998 .

[18]  M. Kaveh,et al.  Image enhancement using fourth order partial differential equations , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[19]  G. W. Wei,et al.  Generalized Perona-Malik equation for image restoration , 1999, IEEE Signal Processing Letters.

[20]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[21]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[22]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[24]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[25]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[26]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[27]  Joachim Weickert,et al.  Correspondences between Wavelet Shrinkage and Nonlinear Diffusion , 2003, Scale-Space.

[28]  Qingtang Jiang,et al.  Triangular √3-subdivision schemes: the regular case , 2003 .

[29]  Raymond H. Chan,et al.  Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..

[30]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[31]  R. Chan,et al.  Tight frame: an efficient way for high-resolution image reconstruction , 2004 .

[32]  Joachim Weickert,et al.  Diffusion-Inspired Shrinkage Functions and Stability Results for Wavelet Denoising , 2005, International Journal of Computer Vision.

[33]  J. Douglas Faires,et al.  Study Guide for Numerical Analysis , 2005 .

[34]  Thomas Brox,et al.  Diffusion Filters and Wavelets: What Can They Learn from Each Other? , 2006, Handbook of Mathematical Models in Computer Vision.

[35]  Ioannis A. Kakadiaris,et al.  Image denoising using a tight frame , 2005, IEEE Transactions on Image Processing.

[36]  Manos Papadakis,et al.  Three-dimensional isotropic wavelets for post-acquisitional extraction of latent images of atherosclerotic plaque components from micro-computed tomography of human coronary arteries. , 2007, Academic radiology.

[37]  Amina Chebira,et al.  Adaptive multiresolution frame classification of biomedical images , 2008 .

[38]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[39]  Raymond H. Chan,et al.  Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..

[40]  Stephan Didas Denoising and enhancement of digital images : variational methods, integrodifferential equations, and wavelets , 2008 .

[41]  Jianzhong Wang,et al.  PDE models associated with the bilateral filter , 2009, Adv. Comput. Math..

[42]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Properties of Higher Order Nonlinear Diffusion Filtering Properties of Higher Order Nonlinear Diffusion Filtering , 2022 .

[43]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[44]  Bernhard G. Bodmann,et al.  Texture-based tissue characterization for high-resolution CT scans of coronary arteries , 2009 .

[45]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.