Factors influencing siderophore-mediated biocontrol activity of rhizosphere Pseudomonas spp.

[1]  R. Baker,et al.  Molecular and biochemical bases for activities of biological control agents: the role of siderophores. , 1990 .

[2]  J. Neilands,et al.  Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. , 1989, The Journal of biological chemistry.

[3]  David M. Weller,et al.  Biological control of soilborne plant pathogens in the rhizosphere with bacteria , 1988 .

[4]  C. Reid,et al.  An escherichia coli bioassay of individual siderophores in soil , 1988 .

[5]  P. Bakker,et al.  Siderophore production by plant growth‐promoting pseudomonas SPP. , 1988 .

[6]  A. Kotoujansky,et al.  Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system , 1988, Journal of bacteriology.

[7]  J. Loper Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain , 1988 .

[8]  D. Weller Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent Pseudomonads , 1988 .

[9]  W. Verstraete,et al.  Ecological Significance of Siderophores in Soil , 1988 .

[10]  D. V. D. Helm,et al.  Iron Transport in Microbes, Plants and Animals , 1987 .

[11]  D. Gross,et al.  Outer membrane protein mediating iron uptake via pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae , 1987, Journal of bacteriology.

[12]  S. Lindow,et al.  Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces , 1987 .

[13]  L. A. Simeoni,et al.  Critical iron level associated with biological control of fusarium wilt , 1987 .

[14]  P. Bakker,et al.  BIOASSAY FOR STUDYING THE ROLE OF SIDEROPHORES IN POTATO GROWTH STIMULATION BY PSEUDOMONAS SPP IN SHORT POTATO ROTATIONS , 1987 .

[15]  Peter A. H. M. Bakker,et al.  Interactions of Deleterious and Beneficial Rhizosphere Microorganisms and the Effect of Cropping Practices , 1987 .

[16]  T. Swinburne Iron, Siderophores, and Plant Diseases , 2012, NATO ASI Series.

[17]  G. Défago,et al.  Iron Bound‐Siderophores, Cyanic Acid, and Antibiotics Involved in Suppression of Thielaviopsis basicola by a Pseudomonas fluorescens Strain , 1986 .

[18]  J. Leong Siderophores: Their Biochemistry and Possible Role in the Biocontrol of Plant Pathogens , 1986 .

[19]  J. Buyer,et al.  Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. , 1986, The Journal of biological chemistry.

[20]  J. Leong,et al.  Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain. , 1986, The Journal of biological chemistry.

[21]  M. Schroth,et al.  Importance of Siderophores in Microbial Interactions in the Rhizosphere , 1986 .

[22]  J. Neilands,et al.  Siderophores in relation to plant growth and disease , 1986 .

[23]  D. Gross,et al.  Field evaluations of the interactions among fluorescent pseudomonads, Erwinia carotovora, and potato yields , 1986 .

[24]  D. Gross,et al.  Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay , 1986 .

[25]  A. Toussaint,et al.  Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity , 1985, Journal of bacteriology.

[26]  J. Neilands,et al.  Aerobactin genes in clinical isolates of Escherichia coli , 1985, Journal of bacteriology.

[27]  Y. Elad Influence of Trace Amounts of Cations and Siderophore-Producing Pseudomonads on Chlamydospore Germination ofFusarium oxysporum , 1985 .

[28]  P. Colyer Bacterization of potatoes with Pseudomonas putida and its influence on postharvest soft rot diseases. , 1984 .

[29]  H. Akers Isolation of the Siderophore Schizokinen from Soil of Rice Fields , 1983, Applied and environmental microbiology.

[30]  H. Akers MULTIPLE HYDROXAMIC ACID MICROBIAL IRON CHELATORS (SIDEROPHORES) IN SOILS , 1983 .

[31]  J. Kloepper Effect of Seed Piece Inoculation with Plant Growth-Promoting Rhizobacteria on Populations ofErwinia carotovoraon Potato Roots and in Daughter Tubers , 1983 .

[32]  R. Baker,et al.  Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. , 1982 .

[33]  T. Suslow Chapter 8 – Role of Root-Colonizing Bacteria in Plant Growth , 1982 .

[34]  D. van der Helm,et al.  Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. , 1981, Biochemistry.

[35]  J. Kloepper Relationship of in vitro Antibiosis of Plant Growth-Promoting Rhizobacteria to Plant Growth and the Displacement of Root Microflora , 1981 .

[36]  J. Neilands Microbial iron compounds. , 1981, Annual review of biochemistry.

[37]  J. Kloepper,et al.  Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria , 1980, Nature.

[38]  P. Williams Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli , 1979, Infection and immunity.

[39]  L. Moore,et al.  Agrobacterium Radiobacter Strain 84 and Biological Control of Crown Gall , 1979 .

[40]  J. Neilands,et al.  Agrobactin, a siderophore from Agrobacterium tumefaciens. , 1979, The Journal of biological chemistry.

[41]  W. Lindsay Chemical equilibria in soils , 1979 .

[42]  I. Tessman,et al.  THYMIDINE-REQUIRING MUTANTS OF PHAGE T4. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[43]  King Eo,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954 .