2nd Workshop on Learning with Imbalanced Domains: Preface
暂无分享,去创建一个
Stan Matwin | Luís Torgo | Bartosz Krawczyk | Nathalie Japkowicz | Nuno Moniz | Paula Branco | L. Torgo | B. Krawczyk | N. Japkowicz | S. Matwin | Nuno Moniz | Paula Branco
[1] Luís Torgo,et al. UBL: an R package for Utility-based Learning , 2016, ArXiv.
[2] Ryan McConville,et al. Proper Losses for Learning with Example-Dependent Costs , 2018, LIDTA@ECML/PKDD.
[3] Gustavo E. A. P. A. Batista,et al. On the Need of Class Ratio Insensitive Drift Tests for Data Streams , 2018, LIDTA@ECML/PKDD.
[4] Jesse Davis,et al. Learning from Positive and Unlabeled Data under the Selected At Random Assumption , 2018, LIDTA@ECML/PKDD.
[5] Francisco Herrera,et al. Fuzzy rough classifiers for class imbalanced multi-instance data , 2016, Pattern Recognit..
[6] Jerzy Stefanowski,et al. ImWeights: Classifying Imbalanced Data Using Local and Neighborhood Information , 2018, LIDTA@ECML/PKDD.
[7] Pawel Ksieniewicz. Undersampled Majority Class Ensemble for highly imbalanced binary classification , 2018, LIDTA@ECML/PKDD.
[8] Xu-Ying Liu,et al. Towards Class-Imbalance Aware Multi-Label Learning , 2015, IEEE Transactions on Cybernetics.
[9] Luís Torgo,et al. Resampling strategies for imbalanced time series forecasting , 2017, International Journal of Data Science and Analytics.
[10] Alberto Cano,et al. Multi-label kNN Classifier with Self Adjusting Memory for Drifting Data Streams , 2018, LIDTA@ECML/PKDD.
[11] Luís Torgo,et al. SMOTE for Regression , 2013, EPIA.
[12] João Gama,et al. Ensemble learning for data stream analysis: A survey , 2017, Inf. Fusion.
[13] Sebastián Ventura,et al. An evolutionary algorithm for the discovery of rare class association rules in learning management systems , 2014, Applied Intelligence.
[14] Luís Torgo,et al. A Survey of Predictive Modeling on Imbalanced Domains , 2016, ACM Comput. Surv..
[15] Younghwan Namkoong,et al. Ordinal Classification of Imbalanced Data with Application in Emergency and Disaster Information Services , 2016, IEEE Intelligent Systems.
[16] Bartosz Krawczyk,et al. Learning from imbalanced data: open challenges and future directions , 2016, Progress in Artificial Intelligence.
[17] Marc Sebban,et al. Non-Linear Gradient Boosting for Class-Imbalance Learning , 2018, LIDTA@ECML/PKDD.
[18] Luís Torgo,et al. REBAGG: REsampled BAGGing for Imbalanced Regression , 2018, LIDTA@ECML/PKDD.