Recent developments in optofluidic-assisted Raman spectroscopy

Abstract This paper reviews and compares the different optofluidic techniques for enhancing the retrieved Raman signal in liquids with a focus on aqueous solutions. Recent progress in characterizing different nanostructures and biological molecules utilizing optofluidic fibers such as photonic crystal fibers (PCFs) in Raman spectroscopy are discussed. Techniques and applications to combine surface enhanced Raman spectroscopy (SERS) with optofluidic-assisted Raman spectroscopy are further reviewed. Finally, challenges and future opportunities to advance Raman spectroscopy combined with optofluidics are presented.

[1]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[2]  D. Maysinger,et al.  Gold nanoparticles and quantum dots for bioimaging , 2011, Microscopy research and technique.

[3]  S. Chaudhuri,et al.  CdSxTe1-x films: preparation and properties , 1993 .

[4]  Vincent M Rotello,et al.  Gold nanoparticles in delivery applications. , 2008, Advanced drug delivery reviews.

[5]  G. Socrates,et al.  Infrared Characteristic Group Frequencies , 1980 .

[6]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[7]  Rejean Munger,et al.  A novel method of using hollow-core photonic crystal fiber as a Raman biosensor , 2008, SPIE BiOS.

[8]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[9]  Roger A. Jones,et al.  Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution , 2006, Nucleic acids research.

[10]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[11]  H. W. Schrötter,et al.  The second order Raman spectrum of liquid tetrachloroethylene , 1981 .

[12]  Anna Tinti,et al.  Raman spectroscopy in art and archaeology , 2008 .

[13]  D. Patel,et al.  Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. , 1993, Structure.

[14]  W. Tolles,et al.  A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS) , 1977 .

[15]  J. Y. Han,et al.  High-performance crosslinked colloidal quantum-dot light-emitting diodes , 2009 .

[16]  T. Simonsson,et al.  G-Quadruplex DNA Structures Variations on a Theme , 2001, Biological chemistry.

[17]  Jason A. Guicheteau,et al.  Principal component analysis of bacteria using surface-enhanced Raman spectroscopy , 2006, SPIE Defense + Commercial Sensing.

[18]  Jun Li,et al.  pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups , 2009 .

[19]  Mingyuan Gao,et al.  The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles , 2003 .

[20]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[22]  Arezou A Ghazani,et al.  Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. , 2008, Small.

[23]  Jim Tate,et al.  Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy , 2006, Analytical and bioanalytical chemistry.

[24]  Yi Zhang,et al.  Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering , 2007 .

[25]  Hai Ming,et al.  Broad spectral photonic crystal fiber surface enhanced Raman scattering probe , 2009 .

[26]  M. Litorja,et al.  Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. , 1997, Applied optics.

[27]  A. Brolo,et al.  The adsorption and orientation of pyrazine on silver electrodes: a surface enhanced Raman scattering , 1996 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Sven Ulrich,et al.  Raman spectroscopy on amorphous carbon films , 1996 .

[30]  Stephen Neidle,et al.  Crystal structure of parallel quadruplexes from human telomeric DNA , 2002, Nature.

[31]  Alistair Elfick,et al.  Raman Spectroscopy and Related Techniques in Biomedicine , 2010, Sensors.

[32]  James R. Williamson,et al.  Chemical Probe for Glycosidic Conformation in Telomeric DNAs , 1994 .

[33]  Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS. , 2012, Optics letters.

[34]  Clemens F. Kaminski,et al.  Supercontinuum radiation for applications in chemical sensing and microscopy , 2008 .

[35]  A. Compaan,et al.  Raman analysis of short-range clustering in laser-deposited CdSxTe1−x films , 1998 .

[36]  Claire Gu,et al.  Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber , 2011, Analytical and Bioanalytical Chemistry.

[37]  Roger A. Jones,et al.  Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence , 2007, Nucleic acids research.

[38]  Dakrong Pissuwan,et al.  The forthcoming applications of gold nanoparticles in drug and gene delivery systems. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[39]  A. Helmy,et al.  Photonic crystal fiber for efficient Raman scattering of CdTe quantum dots in aqueous solution. , 2011, ACS nano.

[40]  Kepa Castro,et al.  Raman spectroscopy as a tool to diagnose the impacts of combustion and greenhouse acid gases on properties of Built Heritage , 2008 .

[41]  Fetah Benabid,et al.  Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited] , 2012 .

[42]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[43]  Dinshaw J. Patel,et al.  Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. , 2006, Journal of the American Chemical Society.

[44]  Henry Du,et al.  Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. , 2006, Optics letters.

[45]  Optical frequency comb generation in gas-filled hollow core photonic crystal fibres , 2009 .

[46]  N. Normanno,et al.  Epidermal growth factor-related peptides and their receptors in human malignancies. , 1995, Critical reviews in oncology/hematology.

[47]  A. Helmy,et al.  A study of the interactions that stabilize DNA frayed wires. , 2010, Biophysical chemistry.

[48]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[49]  J. Weinstein,et al.  Biomarkers in Cancer Staging, Prognosis and Treatment Selection , 2005, Nature Reviews Cancer.

[50]  C. Gu,et al.  High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  P. M. Amirtharaj,et al.  Raman scattering study of the properties and removal of excess Te on CdTe surfaces , 1984 .

[52]  Kim P. Hansen,et al.  Introduction to nonlinear photonic crystal fibers , 2005 .

[53]  P. Vandenabeele,et al.  Non‐destructive analysis of paintings using Fourier transform Raman spectroscopy with fibre optics , 2001 .

[54]  Yingchun Yu,et al.  Water-soluble multicolored fluorescent CdTe quantum dots: Synthesis and application for fingerprint developing. , 2010, Journal of colloid and interface science.

[55]  Zhuang Liu,et al.  Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared , 2010, Nano research.

[56]  Michael D. Hargreaves,et al.  Infrared and Raman spectroscopy in forensic science , 2012 .

[57]  Robert I. Altkorn,et al.  Raman Performance Characteristics of Teflon®-AF 2400 Liquid-Core Optical-Fiber Sample Cells , 1999 .

[58]  S. Neidle,et al.  Highly prevalent putative quadruplex sequence motifs in human DNA , 2005, Nucleic acids research.

[59]  Yanyi Huang,et al.  Fabrication of functional microstructured optical fibers through a selective-filling technique , 2004 .

[60]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[61]  P. White,et al.  Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman Scattering , 1995 .

[62]  R. Niessner,et al.  Synthesis of core-shell surface-enhanced Raman tags for bioimaging. , 2010, Analytical chemistry.

[63]  D. Davies,et al.  Helix formation by guanylic acid. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[64]  E. Sargent Solar Cells, Photodetectors, and Optical Sources from Infrared Colloidal Quantum Dots , 2008 .

[65]  R. Guleria,et al.  Biomarkers in cancer screening, research and detection: present and future: a review , 2006, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.

[66]  Gang Zheng,et al.  Facile synthesis of Raman active phospholipid gold nanoparticles. , 2010, Bioconjugate chemistry.

[67]  Shukun Xu,et al.  L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. , 2011, Luminescence : the journal of biological and chemical luminescence.

[68]  Ximei Qian,et al.  Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. , 2011, Cancer research.

[69]  E. Protozanova,et al.  Analysis of the electrophoretic migration of DNA frayed wires. , 1998, Biophysical chemistry.

[70]  Andrew J Berger,et al.  Quantitative concentration measurements of creatinine dissolved in water and urine using Raman spectroscopy and a liquid core optical fiber. , 2005, Journal of biomedical optics.

[71]  S. M. Babu,et al.  The role of potassium tellurite as tellurium source in mercaptoacetic acid-capped CdTe nanoparticles , 2010 .

[72]  Yang Wang,et al.  Approach to Single Molecule Detection Using Surface-Enhanced Resonance Raman Scattering (SERRS): A Study Using Rhodamine 6G on Colloidal Silver , 1995 .

[73]  P Vandenabeele,et al.  A new instrument adapted to in situ Raman analysis of objects of art , 2004, Analytical and bioanalytical chemistry.

[74]  K. Soo,et al.  Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles , 2007, International journal of nanomedicine.

[75]  Richard P Van Duyne,et al.  Creating, characterizing, and controlling chemistry with SERS hot spots. , 2013, Physical chemistry chemical physics : PCCP.

[76]  Shankar Balasubramanian,et al.  Prevalence of quadruplexes in the human genome , 2005, Nucleic acids research.

[77]  A. Phan,et al.  Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution , 2006, Nucleic acids research.

[78]  J. Madariaga,et al.  Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: the wall painting of Santa María de Lemoniz (Basque Country, North of Spain). , 2006, Analytica chimica acta.

[79]  Priti Mehta,et al.  An Overview: Application of Raman Spectroscopy in Pharmaceutical Field , 2010 .

[80]  N. Pieczonka,et al.  Single molecule analysis by surfaced-enhanced Raman scattering. , 2008, Chemical Society reviews.

[81]  J. Stone,et al.  Intensification of Spontaneous Raman Spectra by Use of Liquid Core Optical Fibers , 1972 .

[82]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[83]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[84]  Songqin Liu,et al.  Gold nanoparticle-based signal amplification for biosensing. , 2011, Analytical biochemistry.

[85]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[86]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[87]  Jens Limpert,et al.  Power scaling of high-power fiber lasers and amplifiers , 2005 .

[88]  M. Natan,et al.  Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. , 2008, Journal of the American Chemical Society.

[89]  Ming Hai,et al.  Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid , 2008 .

[90]  S. Sukhishvili,et al.  Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. , 2009, Optics letters.

[91]  Henry Du,et al.  Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. , 2010, Optics letters.

[92]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[93]  E. M. dos Santos,et al.  Liquid-core, liquid-cladding photonic crystal fibers. , 2007, Optics express.

[94]  Hugh Barr,et al.  Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus , 2011, Journal of biophotonics.

[95]  M. Lerch,et al.  CdTe/CdS Clusters with “Core−Shell” Structure in Colloids and Films: The Path of Formation and Thermal Breakup , 2000 .

[96]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[97]  C. Fagnano,et al.  Raman spectroscopic studies of the anhydrous complexes of avidin and streptavidin with biotin , 1996 .

[98]  I. Lednev,et al.  Multidimensional Raman Spectroscopic Signatures as a Tool for Forensic Identification of Body Fluid Traces: A Review , 2011, Applied spectroscopy.

[99]  Hongyu Chen,et al.  Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. , 2010, Journal of the American Chemical Society.

[100]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[101]  M. García,et al.  Surface plasmons in metallic nanoparticles: fundamentals and applications , 2012 .

[102]  R. Macgregor,et al.  Formation and structural determinants of multi-stranded guanine-rich DNA complexes. , 2000, Biophysical chemistry.

[103]  Jian-hui Jiang,et al.  Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. , 2007, Biosensors & bioelectronics.

[104]  M. Vorlíčková,et al.  Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions , 2009, Nucleic acids research.

[105]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[106]  Alexander M Seifalian,et al.  Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. , 2009, Nanomedicine.

[107]  S. Gambhir,et al.  Noninvasive molecular imaging of small living subjects using Raman spectroscopy , 2008, Proceedings of the National Academy of Sciences.

[108]  B. Schreder,et al.  Raman characterization of CdTe/CdS-“core-shell”-clusters in colloids and films , 2000 .

[109]  G. Thomas,et al.  STRUCTURAL POLYMORPHISM OF TELOMERE DNA : INTERQUADRUPLEX AND DUPLEX-QUADRUPLEX CONVERSIONS PROBED BY RAMAN SPECTROSCOPY , 1994 .

[110]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[111]  J. Simmons,et al.  Raman characterization of CdTe nanocrystallites embedded in a glass matrix , 1997 .

[112]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[113]  S. Muyldermans,et al.  Antibody Fragments as Probe in Biosensor Development , 2008, Sensors.

[114]  Mark Holtz,et al.  Small-volume Raman spectroscopy with a liquid core waveguide , 1999 .

[115]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[116]  S. Hanash,et al.  Mining the plasma proteome for cancer biomarkers , 2008, Nature.

[117]  Jean Paul Remon,et al.  Applications of Raman spectroscopy in pharmaceutical analysis , 2002 .

[118]  Zuo-wei Li,et al.  Study of resonance Raman cross section of aqueous β -carotene at low concentrations , 2007 .

[119]  G. Karczewski,et al.  Raman spectra of structures with CdTe-, ZnTe-, and CdSe-based quantum dots and their relation to the fabrication technology , 2008 .

[120]  Yinian Zhu,et al.  Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering , 2008 .

[121]  A. Torreggiani,et al.  A Raman study of the interactions of Streptavidin with Biotin and Biotinyl derivatives. , 1999 .

[122]  F Benabid,et al.  Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling. , 2006, Optics express.

[123]  A. Diego,et al.  Raman spectroscopy speciation of natural and anthropogenic solid phases in river and estuarine sediments with appreciable amount of clay and organic matter , 2008 .

[124]  J Greve,et al.  Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. , 2003, Biophysical journal.

[125]  R. Dasari,et al.  Surface‐enhanced Raman scattering (SERS)—a new tool for single molecule detection and identification , 1998 .

[126]  Mostafa A. El-Sayed,et al.  Application of Liquid Waveguide to Raman Spectroscopy in Aqueous Solution , 1998 .

[127]  Betti Maria,et al.  Analytical and Bioanalytical Chemistry - Plasma Spectrochemistry , 2007 .

[128]  P. D’haeseleer How does DNA sequence motif discovery work? , 2006, Nature Biotechnology.

[129]  F Benabid,et al.  Hollow-core photonic bandgap fibre: new light guidance for new science and technology , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[130]  R. Macgregor,et al.  Unusual behavior exhibited by multistranded guanine-rich DNA complexes. , 1998, Biopolymers.

[131]  J. Irizar,et al.  Raman Spectroscopy of Nanoparticles Using Hollow-Core Photonic Crystal Fibers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[132]  Freek Ariese,et al.  Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. , 2008, Analytica chimica acta.

[133]  Yanbiao Liao,et al.  Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors , 2007, European Workshop on Optical Fibre Sensors.

[134]  Hao Zhang,et al.  Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-Shell Nanocrystals , 2007 .

[135]  W. M. McClain,et al.  Liquid Core Optical Fibers in Raman Spectroscopy , 1981 .

[136]  J. Bajaj,et al.  Characterization of Te precipitates in CdTe crystals , 1983 .

[137]  O. Zelaya-Ángel,et al.  Raman spectroscopy of oxygenated amorphous CdTe films , 1994 .

[138]  Jay L Nadeau,et al.  Photophysical properties of biologically compatible CdSe quantum dot structures. , 2005, The journal of physical chemistry. B.

[139]  Christoph Krafft,et al.  Secondary structure polymorphism in Oxytricha nova telomeric DNA. , 2002, Nucleic acids research.

[140]  E. Protozanova,et al.  Frayed wires: a thermally stable form of DNA with two distinct structural domains. , 1996, Biochemistry.

[141]  Y. Ozaki,et al.  Ultrasensitive Detection of 1, 4-Bis(4-Vinylpyridyl)Phenylene in a Small Volume of Low Refractive Index Liquid by Surface-Enhanced Raman Scattering-Active Light Waveguide , 2004, Applied spectroscopy.

[142]  M. Dresselhaus,et al.  Surface enhanced Raman spectroscopy on a flat graphene surface , 2012, Proceedings of the National Academy of Sciences.

[143]  Yong Wang,et al.  Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. , 2010, ACS nano.

[144]  Michael D. Morris,et al.  Emerging Raman applications and techniques in biomedical and pharmaceutical fields , 2010 .

[145]  Tiejun Chang,et al.  Optical Fiber Raman Spectra of CCl 4 , 1993 .

[146]  G. Thomas,et al.  A phase diagram for sodium and potassium ion control of polymorphism in telomeric DNA. , 1995, Journal of molecular biology.

[147]  Yan Xu,et al.  The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. , 2006, Bioorganic & medicinal chemistry.

[148]  R. Macgregor,et al.  Probing the structure of multi-stranded guanine-rich DNA complexes by Raman spectroscopy and enzymatic degradation. , 1999, Biophysical chemistry.

[149]  A. Kelley,et al.  Hyper-Raman scattering by molecular vibrations. , 2010, Annual review of physical chemistry.

[150]  L. Fu,et al.  All-glass endless single-mode photonic crystal fibers. , 2008, Optics letters.

[151]  R. Akid,et al.  Spectroscopic studies of the corrosion of model iron electrodes in carbonate and phosphate buffer solutions , 2008 .

[152]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[153]  E. M. dos Santos,et al.  Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications. , 2006, Optics express.

[154]  Richard P. Van Duyne,et al.  Intensity Considerations in Liquid Core Optical Fiber Raman Spectroscopy , 2001 .

[155]  S. Sukhishvili,et al.  Towards Full‐Length Accumulative Surface‐Enhanced Raman Scattering‐Active Photonic Crystal Fibers , 2010, Advanced materials.

[156]  Yoshinori Namihira,et al.  Supercontinuum generation at 1.55μm using highly nonlinear photonic crystal fiber for telecommunication and medical applications , 2012 .

[157]  Gilbert C Walker,et al.  Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. , 2010, Cancer letters.

[158]  C. Gu,et al.  Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering , 2008 .

[159]  Jian Xu,et al.  Single cell Raman spectroscopy for cell sorting and imaging. , 2012, Current opinion in biotechnology.

[160]  P. Russell Photonic Crystal Fibers , 2003, Science.

[161]  M. Olivo,et al.  Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. , 2012, Biosensors & bioelectronics.

[162]  A. Hawkins,et al.  On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides , 2007 .

[163]  A. Helmy,et al.  A comparative study of Raman enhancement in capillaries , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[164]  R. J. Scharff,et al.  Portable Raman explosives detection , 2009, Analytical and bioanalytical chemistry.

[165]  Alexander Eychmüller,et al.  Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification , 1998 .

[166]  H. Möhwald,et al.  Ligand-selective aqueous synthesis of one-dimensional CdTe nanostructures. , 2006, Angewandte Chemie.

[167]  Herman A. Szymanski,et al.  Raman Spectroscopy: Theory and Practice , 1967 .

[168]  Jaebum Choo,et al.  Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy. , 2007, Analytical chemistry.

[169]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[170]  M. Tanaka,et al.  Review Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers , 2006 .

[171]  R. Macgregor,et al.  Concentration-dependent structural transitions of human telomeric DNA sequences. , 2012, Biochemistry.

[172]  C. Murphy,et al.  Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. , 2005, Small.