Piecewise perturbation methods for calculating eigensolutions of a complex optical potential
暂无分享,去创建一个
M. Rizea | T. Vertse | L.Gr. Ixaru | M. Rizea | Tamás Vertse | L. Ixaru
[1] Tore Berggren,et al. On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes , 1968 .
[2] Ferreira,et al. Application of Gamow resonances to continuum nuclear spectra. , 1988, Physical review. C, Nuclear physics.
[3] B. Burrows,et al. Lower bounds for quartic anharmonic and double‐well potentials , 1993 .
[4] Elise de Doncker,et al. D01 Chapter-Numerical Algorithms Group, in samenwerking met de andere D01-contributors. 1) NAG Fortran Mini Manual, Mark 8, D01 18p., , 1981 .
[5] A. R. Barnett,et al. COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments , 1985 .
[6] T. Håvie,et al. Generalized neville type extrapolation schemes , 1979 .
[7] Maqueda,et al. Description of alpha clustering including continuum configurations. , 1993, Physical review. C, Nuclear physics.
[8] Tom E. Simos. Exponential fitted methods for the numerical integration of the Schrdinger equation , 1992 .
[9] T. Vertse,et al. On the normalization of Gamow functions , 1971 .
[10] C. Brezinski,et al. Extrapolation methods , 1992 .
[11] T. Vertse,et al. Gamow, a program for calculating the resonant state solution of the radial Schrödinger equation in an arbitrary optical potential , 1984 .