MapReduce for Bayesian Network Parameter Learning using the EM Algorithm

This work applies the distributed computing framework MapReduce to Bayesian network parameter learning from incomplete data. We formulate the classical Expectation Maximization (EM) algorithm within the MapReduce framework. Analytically and experimentally we analyze the speed-up that can be obtained by means of MapReduce. We present details of the MapReduce formulation of EM, report speed-ups versus the sequential case, and carefully compare various Hadoop cluster configurations in experiments with Bayesian networks of different sizes and structures.

[1]  Charles Elkan,et al.  Expectation Maximization Algorithm , 2010, Encyclopedia of Machine Learning.

[2]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[3]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[4]  Ole J. Mengshoel,et al.  Accelerating Bayesian network parameter learning using Hadoop and MapReduce , 2012, BigMine '12.

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[7]  Joseph Gonzalez,et al.  Residual Splash for Optimally Parallelizing Belief Propagation , 2009, AISTATS.

[8]  Ole J. Mengshoel,et al.  Advanced Diagnostics and Prognostics Testbed , 2007 .

[9]  Ole J. Mengshoel,et al.  Age-Layered Expectation Maximization for Parameter Learning in Bayesian Networks , 2012, AISTATS.

[10]  Ole J. Mengshoel,et al.  Belief Propagation by Message Passing in Junction Trees: Computing Each Message Faster Using GPU Parallelization , 2011, UAI.

[11]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[12]  Chuong B Do,et al.  What is the expectation maximization algorithm? , 2008, Nature Biotechnology.

[13]  Viktor K. Prasanna,et al.  Scalable parallel implementation of exact inference in Bayesian networks , 2006, 12th International Conference on Parallel and Distributed Systems - (ICPADS'06).

[14]  S. Lauritzen The EM algorithm for graphical association models with missing data , 1995 .

[15]  Viktor K. Prasanna,et al.  Parallel Exact Inference on a CPU-GPGPU Heterogenous System , 2010, 2010 39th International Conference on Parallel Processing.

[16]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .