Fully automated (operational) modal analysis

Abstract Modal parameter estimation requires a lot of user interaction, especially when parametric system identification methods are used and the modes are selected in a stabilization diagram. In this paper, a fully automated, generally applicable three-stage clustering approach is developed for interpreting such a diagram. It does not require any user-specified parameter or threshold value, and it can be used in an experimental, operational, and combined vibration testing context and with any parametric system identification algorithm. The three stages of the algorithm correspond to the three stages in a manual analysis: setting stabilization thresholds for clearing out the diagram, detecting columns of stable modes, and selecting a representative mode from each column. An extensive validation study illustrates the accuracy and robustness of this automation strategy.

[1]  Filipe Magalhães,et al.  Online automatic identification of the modal parameters of a long span arch bridge , 2009 .

[2]  P. Andersen,et al.  Automated Frequency Domain Decomposition for Operational Modal Analysis , 2007 .

[3]  Paul Sas,et al.  Modal Analysis Theory and Testing , 2005 .

[4]  Bart Peeters,et al.  System identification and damage detection in civil engineering , 2000 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  S. R. Ibrahim,et al.  Modal confidence factor in vibration testing , 1978 .

[7]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[8]  Bart De Moor,et al.  Reliable spurious mode rejection using self learning algorithms , 2004 .

[9]  Guido De Roeck,et al.  Finite element model updating and structural damage identification using OMAX data , 2010 .

[10]  P. Guillaume,et al.  User-assisting tools for a fast frequency-domain modal parameter estimation method , 2004 .

[11]  Guido De Roeck,et al.  Damage identification on the Z24-bridge using vibration monitoring analysis , 2000 .

[12]  James M. W. Brownjohn,et al.  Fuzzy Clustering of Stability Diagrams for Vibration-Based Structural Health Monitoring , 2008, Comput. Aided Civ. Infrastructure Eng..

[13]  B. Moor,et al.  Model reduction and energy analysis as a tool to detect spurious modes , 2002 .

[14]  T. Söderström Brief paper: Test of pole-zero cancellation in estimated models , 1975 .

[15]  P. Guillaume,et al.  The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation? , 2004 .

[16]  Rik Pintelon,et al.  Uncertainty calculation in (operational) modal analysis , 2007 .

[17]  D C Zimmerman,et al.  Autonomous Modal Identification of the Space Shuttle Tail Rudder , 1997 .

[18]  Carlo Rainieri,et al.  Automated output-only dynamic identification of civil engineering structures , 2010 .

[19]  G. Roeck,et al.  Structural damage identification of the highway bridge Z24 by FE model updating , 2004 .

[20]  Guido De Roeck,et al.  System identification and modal analysis in structural mechanics , 2012 .

[21]  E. Parloo,et al.  AUTONOMOUS STRUCTURAL HEALTH MONITORING—PART I: MODAL PARAMETER ESTIMATION AND TRACKING , 2002 .

[22]  Carlo Rainieri,et al.  Automated Operational Modal Analysis as Structural Health Monitoring Tool: Theoretical and Applicative Aspects , 2007 .

[23]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[24]  Guido De Roeck,et al.  Combined Experimental-Operational Modal Testing of Footbridges , 2010 .

[25]  Richard Russell,et al.  A Multi-Input Modal Estimation Algorithm for Mini-Computers , 1982 .

[26]  Y. G. Tsuei,et al.  Complex Mode Indication Function and its Applications to Spatial Domain Parameter Estimation , 1988 .

[27]  R. Kumaresan On the zeros of the linear prediction-error filter for deterministic signals , 1983 .

[28]  Guido De Roeck,et al.  Continuous Vibration Monitoring and Progressive Damage Testing on the Z24 Bridge , 2009 .

[29]  Guido De Roeck,et al.  Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis , 2006 .

[30]  Richard S. Pappa,et al.  A consistent-mode indicator for the eigensystem realization algorithm , 1992 .

[31]  E. Parloo,et al.  On the influence of the parameter constraint on the stability of the poles and the discrimination capabilities of the stabilisation diagrams , 2005 .

[32]  Sabine Van Huffel,et al.  The total least squares problem , 1993 .

[33]  Rik Pintelon,et al.  Uncertainty bounds on modal parameters obtained from stochastic subspace identification , 2008 .

[34]  J. Schoukens,et al.  An automatic frequency domain modal parameter estimation algorithm , 2003 .

[35]  H. Van der Auweraer,et al.  Discriminating physical poles from mathematical poles in high order systems: use and automation of the stabilization diagram , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[36]  G. De Roeck,et al.  Vibration based Structural Health Monitoring using output-only measurements under changing environment , 2008 .

[37]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[38]  M. Scionti,et al.  Stabilisation diagrams: Pole identification using fuzzy clustering techniques , 2005, Adv. Eng. Softw..

[39]  Guido De Roeck,et al.  REFERENCE-BASED STOCHASTIC SUBSPACE IDENTIFICATION FOR OUTPUT-ONLY MODAL ANALYSIS , 1999 .

[40]  Dmitri Tcherniak,et al.  Clustering Approaches to Automatic Modal Parameter Estimation , 2008 .

[41]  Bart Peeters,et al.  Tools to improve detection of structural changes from in-flight flutter data , 2003 .

[42]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[43]  Geert Degrande,et al.  Finite element modelling of a silo based on experimental modal analysis , 2006 .

[44]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .