暂无分享,去创建一个
Gérard Duchamp | Silvia Goodenough | Vincel Hoang Ngoc Minh | Allan I. Solomon | G. Duchamp | A. Solomon | Silvia Goodenough | V. Minh
[1] Karol A. Penson,et al. A three-parameter Hopf deformation of the algebra of Feynman-like diagrams* , 2007, 0704.2522.
[2] Michael E. Hoffman,et al. Quasi-Shuffle Products , 1999 .
[3] Gérard Duchamp,et al. Statistics on Graphs, Exponential Formula and Combinatorial Physics , 2009, ArXiv.
[4] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[5] Michel Petitot,et al. DE L'ALG EBRE DES DE RIEMANN MULTIVARI EES A L'ALG EBRE DES DE HURWITZ MULTIVARI EES , 2001 .
[6] R. Ree,et al. Lie Elements and an Algebra Associated With Shuffles , 1958 .
[7] Jun Murakami,et al. Kontsevich’s integral for the Kauffman polynomial , 1996, Nagoya Mathematical Journal.
[8] Bernhard K. Meister,et al. Quantum field theory of partitions , 1999 .
[9] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[10] Kuo-Tsai Chen,et al. Iterated path integrals , 1977 .
[11] Gérard Duchamp,et al. Noncommutative Symmetric Functions Vi: Free Quasi-Symmetric Functions and Related Algebras , 2002, Int. J. Algebra Comput..
[12] Kraków,et al. Combinatorial algebra for second-quantized Quantum Theory , 2010, 1001.4964.
[13] Karol A. Penson,et al. From Quantum Mechanics to Quantum Field Theory: The Hopf route , 2010 .
[14] Gérard Duchamp,et al. Feynman graphs and related Hopf algebras , 2005, ArXiv.
[15] D. Kreimer. Knots and Feynman Diagrams , 2000 .