Sperner spaces and first-order logic

51A15, 03B30, 03C75, 03E75We study the class of Sperner spaces, a generalized version of affine spaces, as defined in the language of point-line incidence and line parallelity. We show that, although the class of Sperner spaces is a pseudo-elementaryclass, it is not elementary nor even-axiomatizable. We also axiomatize the first-order theory of this class.

[1]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[2]  On free constructions , 1991 .

[3]  Jouko A. Väänänen,et al.  The Härtig Quantifier: A Survey , 1991, J. Symb. Log..

[4]  Jouko Väänänen,et al.  The Härtig quantifier: a survey , 1991, Journal of Symbolic Logic.

[5]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.