The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics

We prove the local-in-time existence of solutions with a surface of current-vortex sheet (tangential discontinuity) of the equations of ideal compressible magnetohydrodynamics in three space dimensions provided that a stability condition is satisfied at each point of the initial discontinuity. This paper is a natural completion of our previous analysis (Trakhinin in Arch Ration Mech Anal 177:331–366, 2005) where a sufficient condition for the weak stability of planar current-vortex sheets was found and a basic a priori estimate was proved for the linearized variable coefficients problem for nonplanar discontinuities. The original nonlinear problem is a free boundary hyperbolic problem. Since the free boundary is characteristic, the functional setting is provided by the anisotropic weighted Sobolev spaces $${H^m_*}$$ . The fact that the Kreiss–Lopatinski condition is satisfied only in a weak sense yields losses of derivatives in a priori estimates. Therefore, we prove our existence theorem by a suitable Nash–Moser-type iteration scheme.

[1]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[2]  Guy Métivier,et al.  Stability of Multidimensional Shocks , 2001 .

[3]  Jean-François Coulombel,et al.  Weakly stable multidimensional shocks , 2004 .

[4]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[5]  Yuri Trakhinin,et al.  Existence of Compressible Current-Vortex Sheets: Variable Coefficients Linear Analysis , 2005 .

[6]  Jean-François Coulombel,et al.  NONLINEAR COMPRESSIBLE VORTEX SHEETS IN TWO SPACE DIMENSIONS , 2008 .

[7]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[8]  V. Baranov,et al.  MODEL FOR THE INTERACTION OF THE SOLAR WIND WITH THE INTERSTELLAR MEDIUM. , 1971 .

[9]  R. Dahlburg,et al.  The compressible plane current-vortex sheet , 2000 .

[10]  S. Schochet The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit , 1986 .

[11]  On the existence of incompressible current–vortex sheets: study of a linearized free boundary value problem , 2005 .

[12]  W. Axford The interaction of the solar wind with the interstellar medium , 1972 .

[13]  A. Majda The stability of multi-dimensional shock fronts , 1983 .

[14]  Paolo Secchi,et al.  Linear symmetric hyperbolic systems with characteristic boundary , 1995 .

[15]  A. Majda,et al.  The stability of multidimensional shock fronts , 1983 .

[16]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[17]  A. Matsumura,et al.  The fixed boundary value problems for the equations of ideal Magneto-Hydrodynamics with a perfectly conducting wall condition , 1991 .

[18]  L. Hörmander,et al.  The boundary problems of physical geodesy , 1976 .

[19]  T. Yanagisawa,et al.  The initial boundary value problem for linear symmetric hyperbolic systems with boundary characteristic of constant multiplicity , 1995 .

[20]  John W. Miles,et al.  On the stability of a plane vortex sheet with respect to three-dimensional disturbances , 1963, Journal of Fluid Mechanics.

[21]  Hyperbolic boundary value problems for symmetric systems with variable multiplicities , 2004, math/0401444.

[22]  An estimate of the energy integral of a mixed problem for the equations of gasdynamics with boundary conditions on a shock wave , 1981 .

[23]  K. Ilin,et al.  On the stability of Alfvén discontinuity , 2006 .

[24]  Yuri Trakhinin,et al.  Dissipative Symmetrizers of Hyperbolic Problems and Their Applications to Shock Waves and Characteristic Discontinuities , 2006, SIAM J. Math. Anal..

[25]  Jacques Francheteau,et al.  Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels , 1998, Astérisque.

[26]  Peter Szmolyan,et al.  Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves , 1995 .

[27]  M. Ruderman,et al.  The effect of magnetic fields on the macroscopic instability of the heliopause. 1. Parallel interstellar magnetic fields , 1993 .

[28]  S. Alinhac,et al.  Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .

[29]  Tai-Ping Liu,et al.  Advances in the Theory of Shock Waves , 2001 .

[30]  A. Majda,et al.  The existence of multidimensional shock fronts , 1983 .

[31]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[32]  On an initial boundary value problem for the equations of ideal magneto-hydrodynamics , 1995 .

[33]  R. Phillips,et al.  Local boundary conditions for dissipative symmetric linear differential operators , 1960 .

[34]  A. Blokhin,et al.  Stability of Strong Discontinuities in Fluids and MHD , 2002 .

[35]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[36]  T. Shirota,et al.  On the Initial‐Boundary‐Value Problem for the Linearized Equations of Magnetohydrodynamics , 1998 .

[37]  Jeffrey Rauch,et al.  Symmetric positive systems with boundary characteristic of constant multiplicity , 1985 .

[38]  Paolo Secchi,et al.  Well-posedness of characteristic symmetric hyperbolic systems , 1996 .

[39]  A. Majda The existence of multi-dimensional shock fronts , 1983 .

[40]  C. Rohde,et al.  The Bifurcation Analysis of the MHD Rankine-Hugoniot Equations for a Perfect Gas , 2003 .

[41]  T. Yanagisawa,et al.  The trace theorem on anisotropic Sobolev spaces , 1994 .

[42]  F. Massey,et al.  Differentiability of solutions to hyperbolic initial-boundary value problems , 1974 .

[43]  Y. Trakhinin A Complete 2D Stability Analysis of Fast MHD Shocks in an Ideal Gas , 2003 .

[44]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .