Visualization methods for metric studies

Metric studies are based on complex, voluminous and heterogeneous data. In order to obtain meaningful results, human guided analysis is therefore needed and can be achieved with information visualization methods. In this paper, we survey visualization methods traditionally used in informetrics and present recent achievements in this domain. We also outline some potentially interesting visualization tools from machine learning

[1]  Eugene Garfield,et al.  THE USE OF CITATION DATA IN WRITING THE HISTORY OF SCIENCE , 1964 .

[2]  Helge Ritter,et al.  A hierarchically growing hyperbolic self-organizing map for rapid structuring of large data sets , 2005 .

[3]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..

[4]  Dmitri Roussinov,et al.  A Scalable Self-organizing Map Algorithm for Textual Classification: A Neural Network Approach to Thesaurus Generation , 1998 .

[5]  James T. Enns,et al.  Visualizing real-time multivariate data using preattentive processing , 1995, TOMC.

[6]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[7]  Christopher J. C. Burges,et al.  Geometric Methods for Feature Extraction and Dimensional Reduction , 2005 .

[8]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[9]  Jarkko Venna,et al.  Trustworthiness and metrics in visualizing similarity of gene expression , 2003, BMC Bioinformatics.

[10]  Peter Tiño,et al.  Hierarchical GTM: Constructing Localized Nonlinear Projection Manifolds in a Principled Way , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[12]  Jarkko Venna,et al.  Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study , 2001, ICANN.

[13]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[14]  Juha Vesanto,et al.  Data exploration process based on the self-organizing map , 2002 .

[15]  Fabrice Rossi,et al.  Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps , 2006, Neural Networks.

[16]  Hsinchun Chen,et al.  Visualization of large category map for Internet browsing , 2003, Decis. Support Syst..

[17]  Jean-Philippe Domenger,et al.  Exploring InfoVis Publication History with Tulip , 2004 .

[18]  Ata Kabán,et al.  A Dynamic Probabilistic Model to Visualise Topic Evolution in Text Streams , 2002, Journal of Intelligent Information Systems.

[19]  Peter Tiño,et al.  A generative probabilistic approach to visualizing sets of symbolic sequences , 2004, KDD '04.

[20]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[21]  Klaus-Robert Müller,et al.  Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..

[22]  Christopher M. Bishop Latent Variable Models , 1998, Learning in Graphical Models.

[23]  Christopher M. Bishop,et al.  Developments of the generative topographic mapping , 1998, Neurocomputing.

[24]  Klaus Obermayer,et al.  A Stochastic Self-Organizing Map for Proximity Data , 1999, Neural Computation.

[25]  Ata Kabán,et al.  A Combined Latent Class and Trait Model for the Analysis and Visualization of Discrete Data , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Richard C. T. Lee,et al.  A Triangulation Method for the Sequential Mapping of Points from N-Space to Two-Space , 1977, IEEE Transactions on Computers.

[27]  Chaomei Chen Structuring and visualising the WWW by generalised similarity analysis , 1997, HYPERTEXT '97.

[28]  Matthew Chalmers,et al.  A Pivot-Based Routine for Improved Parent-Finding in Hybrid MDS† , 2004, Inf. Vis..

[29]  Matthew Chalmers,et al.  Fast Multidimensional Scaling Through Sampling, Springs and Interpolation , 2003, Inf. Vis..

[30]  Jean-Daniel Fekete,et al.  Les leçons tirées des deux compétitions de visualisation d'information , 2004, IHM '04.

[31]  André Skupin,et al.  From metaphor to method: cartographic perspectives on information visualization , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[32]  Michel Verleysen,et al.  Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis , 2004, Neurocomputing.

[33]  Georges G. Grinstein,et al.  Table visualizations: a formal model and its applications , 2000 .

[34]  Johan Himberg,et al.  From Insights to Innovations: Data Mining, Visualization, and User Interfaces , 2022 .

[35]  Christopher M. Bishop,et al.  A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[37]  Jan W. Buzydlowski,et al.  Real-time author co-citation mapping for online searching , 2003, Inf. Process. Manag..

[38]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[39]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[40]  Chaomei Chen,et al.  Visualizing knowledge domains , 2005, Annu. Rev. Inf. Sci. Technol..

[41]  Samuel Kaski,et al.  Self organization of a massive text document collection , 1999 .

[42]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[43]  E. Aronson,et al.  Theory and method , 1985 .

[44]  Jean-Charles Lamirel Application d'une approche symbolico-connexionniste pour la conception d'un système documentaire hautement interactif : le prototype NOMAD , 1995 .

[45]  André Skupin,et al.  A cartographic approach to visualizing conference abstracts , 2002 .

[46]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[47]  Kilian Q. Weinberger,et al.  Spectral Methods for Dimensionality Reduction , 2006, Semi-Supervised Learning.

[48]  Bruce Hendrickson,et al.  Knowledge Mining With VxInsight: Discovery Through Interaction , 1998, Journal of Intelligent Information Systems.

[49]  Chaomei Chen,et al.  Visualising Semantic Spaces and Author Co-Citation Networks in Digital Libraries , 1999, Inf. Process. Manag..

[50]  Peter Tiño,et al.  Semisupervised learning of hierarchical latent trait models for data visualization , 2005, IEEE Transactions on Knowledge and Data Engineering.

[51]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[52]  Le Song,et al.  WilmaScope Graph Visualisation , 2004, IEEE Symposium on Information Visualization.

[53]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[54]  Vijay V. Raghavan,et al.  Co-Citation Count vs Correlation for Influence Network Visualization , 2003, Inf. Vis..

[55]  Tim Dwyer,et al.  WilmaScope - A 3D Graph Visualization System , 2004, Graph Drawing Software.

[56]  E. Garfield,et al.  The geography of science: disciplinary and national mappings , 1985 .

[57]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[58]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[59]  Michaël Aupetit Visualizing distortions in continuous projection techniques , 2004, ESANN.

[60]  Sara Irina Fabrikant,et al.  Spatialization Methods: A Cartographic Research Agenda for Non-geographic Information Visualization , 2003 .

[61]  Roger W. Schvaneveldt,et al.  Pathfinder associative networks: studies in knowledge organization , 1990 .

[62]  Panu Somervuo,et al.  Self-organizing maps of symbol strings , 1998, Neurocomputing.

[63]  Weimao Ke,et al.  Major Information Visualization Authors, Papers and Topics in the ACM Library , 2004 .

[64]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[65]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[66]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[67]  Hujun Yin,et al.  Tree view self-organisation of web content , 2005, Neurocomputing.

[68]  Gary Marchionini,et al.  A self-organizing semantic map for information retrieval , 1991, SIGIR '91.

[69]  Jean-Luc Gaudiot IEEE Transactions on Computer , 2003 .

[70]  Jeanny Hérault,et al.  Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.

[71]  Aïcha El Golli,et al.  A Self-Organizing Map for Dissimilarity Data , 2004 .

[72]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[73]  Guy Melançon,et al.  Multiscale visualization of small world networks , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[74]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[75]  Sinan Salman,et al.  DIVA: a visualization system for exploring document databases for technology forecasting , 2002 .

[76]  Hsinchun Chen,et al.  Internet Categorization and Search: A Self-Organizing Approach , 1996, J. Vis. Commun. Image Represent..

[77]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[78]  Chaomei Chen,et al.  Visualizing evolving networks: minimum spanning trees versus pathfinder networks , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[79]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[80]  Jean-Charles Lamirel,et al.  Using artificial neural networks for mapping of scienceand technology: A multi-self-organizing-maps approach , 2001, Scientometrics.

[81]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[82]  H. Ritter Self-Organizing Maps on non-euclidean Spaces , 1999 .

[83]  André Skupin,et al.  SPATIAL METAPHORS FOR VISUALIZING VERY LARGE DATA ARCHIVES , 2003 .

[84]  Kevin W. Boyack,et al.  Cluster stability and the use of noise in interpretation of clustering , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[85]  John Platt,et al.  FastMap, MetricMap, and Landmark MDS are all Nystrom Algorithms , 2005, AISTATS.

[86]  Chaomei Chen Generalised similarity analysis and pathfinder network scaling , 1998, Interact. Comput..

[87]  K. McCain,et al.  Visualization of Literatures. , 1997 .

[88]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[89]  Bin Zhu,et al.  Newsmap: a knowledge map for online news , 2005, Decis. Support Syst..