Algorithms and Models for the Web Graph

The burning number b(G) of a graph G was introduced by Bonato, Janssen, and Roshanbin [Lecture Notes in Computer Science 8882 (2014)] to measure the speed of the spread of contagion in a graph. They proved for any connected graph G of order n, b(G) ≤ 2 √n − 1, and conjectured that b(G) ≤ √n . In this paper, we proved b(G) ≤ −3+ √ 24n+33 4 , which is roughly √ 6 2 √ n. We also settled the following conjecture of Bonato-Janssen-Roshanbin: b(G)b(Ḡ) ≤ n + 4 provided both G and Ḡ are connected.

[1]  Svante Janson,et al.  A new approach to the giant component problem , 2007, Random Struct. Algorithms.

[2]  Nikolaos Fountoulakis,et al.  What I Tell You Three Times Is True: Bootstrap Percolation in Small Worlds , 2012, WINE.

[3]  Michele Garetto,et al.  A large deviation approach to super-critical bootstrap percolation on the random graph Gn, p , 2018, ArXiv.

[4]  Iraj Saniee,et al.  Bootstrap Percolation on Periodic Trees , 2013, ANALCO.

[5]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  R. Schonmann,et al.  Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions , 2008 .

[7]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[8]  R. Schonmann Critical points of two-dimensional bootstrap percolation-like cellular automata , 1990 .

[9]  F. Ball,et al.  Epidemics on random intersection graphs , 2010, 1011.4242.

[10]  Nicolas Schabanel,et al.  Graph Augmentation via Metric Embedding , 2008, OPODIS.

[11]  Yuval Peres,et al.  Bootstrap Percolation on Infinite Trees and Non-Amenable Groups , 2003, Combinatorics, Probability and Computing.

[12]  Oskar Sandberg,et al.  Neighbor Selection and Hitting Probability in Small-World Graphs , 2007, ArXiv.

[13]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[14]  Stochastic Orders , 2008 .

[15]  Boris G. Pittel,et al.  Note on the Heights of Random Recursive Trees and Random m-ary Search Trees , 1994, Random Struct. Algorithms.

[16]  Jon M. Kleinberg,et al.  Small-World Phenomena and the Dynamics of Information , 2001, NIPS.

[17]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[18]  József Balogh,et al.  Bootstrap percolation on the random regular graph , 2007, Random Struct. Algorithms.

[19]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.

[20]  Mark A. McComb Comparison Methods for Stochastic Models and Risks , 2003, Technometrics.

[21]  Béla Bollobás,et al.  Majority Bootstrap Percolation on the Hypercube , 2007, Combinatorics, Probability and Computing.

[22]  Moni Naor,et al.  Know thy neighbor's neighbor: the power of lookahead in randomized P2P networks , 2004, STOC '04.

[23]  R. Schonmann On the Behavior of Some Cellular Automata Related to Bootstrap Percolation , 1992 .

[24]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[25]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[26]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[27]  Nikolaos Fountoulakis,et al.  Bootstrap Percolation in Power-Law Random Graphs , 2011, Journal of Statistical Physics.

[28]  Béla Bollobás,et al.  Sparse random graphs with clustering , 2008, Random Struct. Algorithms.

[29]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[30]  J. Gravner,et al.  A sharper threshold for bootstrap percolation in two dimensions , 2010, 1002.3881.

[31]  Matti Vihola,et al.  Conditional convex orders and measurable martingale couplings , 2014, 1404.0999.

[32]  M. Biskup,et al.  Metastable Behavior for Bootstrap Percolation on Regular Trees , 2009, 0904.3965.

[33]  Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions , 2011, 1110.0733.

[34]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[35]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Hamed Amini,et al.  Bootstrap Percolation and Diffusion in Random Graphs with Given Vertex Degrees , 2010, Electron. J. Comb..

[38]  H. Duminil-Copin,et al.  Sharp metastability threshold for an anisotropic bootstrap percolation model , 2010, 1010.4691.

[39]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[40]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[41]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[42]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[43]  M. AizenmanS,et al.  Metastability effects in bootstrap percolation ? , 2001 .

[44]  Wen-Jing Hsu,et al.  Near Optimal Routing in a Small-World Network with Augmented Local Awareness , 2005, ISPA.

[45]  A. Holroyd Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.

[46]  Israel A. Wagner,et al.  Efficiently searching a graph by a smell-oriented vertex process , 2004, Annals of Mathematics and Artificial Intelligence.

[47]  S. Janson,et al.  Bootstrap percolation on Galton-Watson trees , 2013, 1304.2260.

[48]  Béla Bollobás,et al.  Bootstrap Percolation in High Dimensions , 2009, Combinatorics, Probability and Computing.

[49]  J. Adler,et al.  Finite-size effects for some bootstrap percolation models , 1990 .

[50]  Sterling Sawaya,et al.  Extinction in a branching process: why some of the fittest strategies cannot guarantee survival , 2012 .

[51]  Laurent Viennot,et al.  Asymptotic Modularity of Some Graph Classes , 2011, ISAAC.

[52]  Iraj Saniee,et al.  BOOTSTRAP PERCOLATION ON RANDOM GEOMETRIC GRAPHS , 2012, Probability in the Engineering and Informational Sciences.