Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin

[1]  G. Calo’,et al.  Nociceptin/orphanin FQ receptor knockout rats: In vitro and in vivo studies , 2011, Neuropharmacology.

[2]  B. Kieffer,et al.  Endogenous nociceptin/orphanin‐fq in the dorsal hippocampus facilitates despair‐related behavior , 2010, Hippocampus.

[3]  K. Varani,et al.  Swim stress enhances nociceptin/orphanin FQ-induced inhibition of rat dorsal raphe nucleus activity in vivo and in vitro: Role of corticotropin releasing factor , 2010, Neuropharmacology.

[4]  C. Cifani,et al.  Chronic treatment with the selective NOP receptor antagonist [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats , 2009, Psychopharmacology.

[5]  Cristiano Nazzaro,et al.  Inhibition of serotonin outflow by nociceptin/orphaninFQ in dorsal raphe nucleus slices from normal and stressed rats: Role of corticotropin releasing factor , 2009, Neurochemistry International.

[6]  Riccardo Viaro,et al.  Nociceptin/Orphanin FQ Modulates Motor Behavior and Primary Motor Cortex Output Through Receptors Located in Substantia Nigra Reticulata , 2009, Neuropsychopharmacology.

[7]  D. Lambert,et al.  Binding of the novel radioligand [3H]UFP-101 to recombinant human and native rat nociceptin/orphanin FQ receptors , 2008, Naunyn-Schmiedeberg's Archives of Pharmacology.

[8]  David G. Lambert,et al.  The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential , 2008, Nature Reviews Drug Discovery.

[9]  M. Ansorge,et al.  Inhibition of Serotonin But Not Norepinephrine Transport during Development Produces Delayed, Persistent Perturbations of Emotional Behaviors in Mice , 2008, The Journal of Neuroscience.

[10]  R. McCarley,et al.  Nociceptin/orphanin FQ decreases serotonin efflux in the rat brain but in contrast to a κ-opioid has no antagonistic effect on μ-opioid-induced increases in serotonin efflux , 2007, Neuroscience.

[11]  J. Kelly,et al.  Chronic Fluoxetine Treatment Attenuates Stressor-Induced Changes in Temperature, Heart Rate, and Neuronal Activation in the Olfactory Bulbectomized Rat , 2007, Neuropsychopharmacology.

[12]  J. Zanoveli,et al.  Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: Evidence from the elevated T-maze , 2007, Neuropharmacology.

[13]  I. Lucki,et al.  Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test , 2007, Psychopharmacology.

[14]  C. Spyraki,et al.  Chronic antidepressant treatment modulates the release of somatostatin in the rat nucleus accumbens , 2006, Neuroscience Letters.

[15]  G. Calo’,et al.  Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands , 2006, Naunyn-Schmiedeberg's Archives of Pharmacology.

[16]  S. Salvadori,et al.  UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. , 2006, CNS drug reviews.

[17]  J. Costentin,et al.  Opioid receptor‐like 1 (NOP) receptors in the rat dorsal raphe nucleus: Evidence for localization on serotoninergic neurons and functional adaptation after 5,7‐dihydroxytryptamine lesion , 2005, Journal of neuroscience research.

[18]  G. Chouvet,et al.  Effects of Acute and Long-Term Administration of Escitalopram and Citalopram on Serotonin Neurotransmission: an In Vivo Electrophysiological Study in Rat Brain , 2005, Neuropsychopharmacology.

[19]  R. Valentino,et al.  Peptides that fine-tune the serotonin system , 2005, Neuropeptides.

[20]  D. Slattery,et al.  GABAB Receptor Antagonist-Mediated Antidepressant-Like Behavior Is Serotonin-Dependent , 2005, Journal of Pharmacology and Experimental Therapeutics.

[21]  F. Yocca,et al.  Serotonin (5-HT) release in the dorsal raphé and ventral hippocampus: Raphé control of somatodendritic and terminal 5-HT release , 2005, Journal of Neural Transmission.

[22]  G. Debonnel,et al.  In-vivo modulation of central 5-hydroxytryptamine (5-HT1A) receptor-mediated responses by the cholinergic system. , 2004, The international journal of neuropsychopharmacology.

[23]  L. Lanfumey,et al.  Chronic treatment with imipramine reverses immobility behaviour, hippocampal corticosteroid receptors and cortical 5-HT1A receptor mRNA in prenatally stressed rats , 2004, Neuropharmacology.

[24]  S. Caccia,et al.  Effects of chronic treatment with escitalopram or citalopram on extracellular 5‐HT in the prefrontal cortex of rats: role of 5‐HT1A receptors , 2004, British journal of pharmacology.

[25]  S. Salvadori,et al.  Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[26]  S. Salvadori,et al.  Pharmacological profile of nociceptin/orphanin FQ receptors regulating 5‐hydroxytryptamine release in the mouse neocortex , 2004, The European journal of neuroscience.

[27]  E. Bagdy,et al.  Reciprocal Innervation between Serotonergic and GABAergic Neurons in Raphe Nuclei of the Rat , 2004, Neurochemical Research.

[28]  K. Vinod,et al.  Cortical alpha-adrenoceptor downregulation by tricyclic antidepressants in the rat brain , 2003, Neurochemistry International.

[29]  R. Bertorelli,et al.  Blockade of nociceptin/orphanin FQ–NOP receptor signalling produces antidepressant‐like effects: pharmacological and genetic evidences from the mouse forced swimming test , 2003, The European journal of neuroscience.

[30]  R. Lydic,et al.  Differential cholinergic activation of G proteins in rat and mouse brainstem: Relevance for sleep and nociception , 2003, The Journal of comparative neurology.

[31]  G. Wegener,et al.  Increased extracellular serotonin level in rat hippocampus induced by chronic citalopram is augmented by subchronic lithium: neurochemical and behavioural studies in the rat , 2003, Psychopharmacology.

[32]  D. Lambert,et al.  UFP-101, a high affinity antagonist for the nociceptin/orphanin FQ receptor: radioligand and GTPγ35S binding studies , 2003, Naunyn-Schmiedeberg's Archives of Pharmacology.

[33]  J. Aceves,et al.  Histamine H1 receptors in rat dorsal raphe nucleus: pharmacological characterisation and linking to increased neuronal activity , 2002, Brain Research.

[34]  R. Tao,et al.  GABAergic and Glutamatergic Afferents in the Dorsal Raphe Nucleus Mediate Morphine-Induced Increases in Serotonin Efflux in the Rat Central Nervous System , 2002, Journal of Pharmacology and Experimental Therapeutics.

[35]  S. E. Gartside,et al.  5-HT1A receptor-mediated autoinhibition does not function at physiological firing rates: evidence from in vitro electrophysiological studies in the rat dorsal raphe nucleus , 2002, Neuropharmacology.

[36]  G. Pasternak,et al.  Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. , 2002, Biochemical and biophysical research communications.

[37]  G. Calo’,et al.  Central injections of nocistatin or its C‐terminal hexapeptide exert anxiogenic‐like effect on behaviour of mice in the plus‐maze test , 2002, British journal of pharmacology.

[38]  S. Salvadori,et al.  [Nphe1,Arg14,Lys15]Nociceptin‐NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor , 2002, British journal of pharmacology.

[39]  H. Akil,et al.  Determinants of ligand selectivity at the kappa-receptor based on the structure of the orphanin FQ receptor. , 2002, The Journal of pharmacology and experimental therapeutics.

[40]  L. Naudon,et al.  Chronic paroxetine increases [3H]nociceptin binding in rat dorsal raphe nucleus , 2002, Neuroreport.

[41]  R. Quirion,et al.  Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test , 2002, Naunyn-Schmiedeberg's Archives of Pharmacology.

[42]  M. Millan,et al.  S33005, a novel ligand at both serotonin and norepinephrine transporters: I. Receptor binding, electrophysiological, and neurochemical profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. , 2001, The Journal of pharmacology and experimental therapeutics.

[43]  J. Costentin,et al.  Autoradiographic localization of [3H]nociceptin binding sites in the rat brain , 2000, Brain Research.

[44]  C. Hiemke,et al.  Steady state concentrations of clomipramine and its major metabolite desmethylclomipramine in rat brain and serum after oral administration of clomipramine , 2000, European Neuropsychopharmacology.

[45]  R Tao,et al.  Differential effect of local infusion of serotonin reuptake inhibitors in the raphe versus forebrain and the role of depolarization-induced release in increased extracellular serotonin. , 2000, The Journal of pharmacology and experimental therapeutics.

[46]  L. Terenius,et al.  Nociceptin/orphanin FQ metabolism and bioactive metabolites , 2000, Peptides.

[47]  M. Morari,et al.  Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system , 2000, Peptides.

[48]  B. Hawes,et al.  Cellular actions of nociceptin: transduction mechanisms , 2000, Peptides.

[49]  L. Schechter,et al.  Effects of chronic fluoxetine treatment in the presence and absence of (±)pindolol: a microdialysis study , 2000, British journal of pharmacology.

[50]  S. Salvadori,et al.  Pharmacology of nociceptin and its receptor: a novel therapeutic target , 2000, British journal of pharmacology.

[51]  H. Akil,et al.  Opioid receptor‐like (ORL1) receptor distribution in the rat central nervous system: Comparison of ORL1 receptor mRNA expression with 125I‐[14Tyr]‐orphanin FQ binding , 1999, The Journal of comparative neurology.

[52]  L. Beani,et al.  Inhibitory effect of nociceptin on [3H]‐5‐HT release from rat cerebral cortex slices , 1999, British journal of pharmacology.

[53]  P. Cowen,et al.  Effects of (−)‐tertatolol, (−)‐penbutolol and (±)‐pindolol in combination with paroxetine on presynaptic 5‐HT function: an in vivo microdialysis and electrophysiological study , 1999, British journal of pharmacology.

[54]  J. Meunier,et al.  Distinct mechanisms for activation of the opioid receptor-like 1 and kappa-opioid receptors by nociceptin and dynorphin A. , 1999, Molecular pharmacology.

[55]  B. Lerer,et al.  Chronic clomipramine and triiodothyronine increase serotonin levels in rat frontal cortex in vivo: relationship to serotonin autoreceptor activity. , 1999, The Journal of pharmacology and experimental therapeutics.

[56]  F. Artigas,et al.  Effect of fluoxetine on extracellular 5-hydroxytryptamine in rat brain. Role of 5-HT autoreceptors. , 1998, European journal of pharmacology.

[57]  D. Nutt,et al.  Sertraline, a selective serotonin reuptake inhibitor modulates extracellular noradrenaline in the rat frontal cortex , 1998, Journal of psychopharmacology.

[58]  G. Aghajanian,et al.  Opioids suppress spontaneous and NMDA-induced inhibitory postsynaptic currents in the dorsal raphe nucleus of the rat in vitro , 1997, Brain Research.

[59]  F. Artigas,et al.  In vivo effects of the simultaneous blockade of serotonin and norepinephrine transporters on serotonergic function. Microdialysis studies. , 1996, The Journal of pharmacology and experimental therapeutics.

[60]  M. Christie,et al.  Increase by the ORL1 receptor (opioid receptor‐like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones , 1996, British journal of pharmacology.

[61]  J. Heym,et al.  Comparison of the Effects of Sertraline and Its Metabolite Desmethylsertraline on Blockade of Central 5-HT Reuptake In Vivo , 1996, Neuropsychopharmacology.

[62]  D. Grandy,et al.  Orphanin FQ: A Neuropeptide That Activates an Opioidlike G Protein-Coupled Receptor , 1995, Science.

[63]  Marc Parmentier,et al.  Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor , 1995, Nature.

[64]  H. Meltzer,et al.  Effect of antidepressants on striatal and accumbens extracellular dopamine levels. , 1995, European journal of pharmacology.

[65]  Stanley J. Watson,et al.  Immunohistochemical localization of the cloned μ opioid receptor in the rat CNS , 1995, Journal of Chemical Neuroanatomy.

[66]  K. Ishikawa,et al.  Measurement and pharmacokinetic analysis of imipramine and its metabolite by brain microdialysis , 1994, British journal of pharmacology.

[67]  I. Lucki,et al.  The presence of a serotonin uptake inhibitor alters pharmacological manipulations of serotonin release , 1993, Neuroscience.

[68]  S. Warrington Clinical Implications of the Pharmacology of Serotonin Reuptake Inhibitors , 1992, International clinical psychopharmacology.

[69]  C. Montigny,et al.  Modification of serotonergic neuron properties by long-term treatment with serotonin reuptake blockers. , 1990, The Journal of clinical psychiatry.

[70]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[71]  K. Overø Kinetics of citalopram in test animals; drug exposure in safety studies , 1982, Progress in Neuro-Psychopharmacology and Biological Psychiatry.