Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements

For aerosol retrieval from multi-angle polarimetric (MAP) measurements over the ocean it is important to accurately account for the contribution of the ocean-body to the top-of-atmosphere signal, especially for wavelengths <500 nm. Performing online radiative transfer calculations in the coupled atmosphere ocean system is too time consuming for operational retrieval algorithms. Therefore, mostly lookup-tables of the ocean body reflection matrix are used to represent the lower boundary in an atmospheric radiative transfer model. For hyperspectral measurements such as those from Spectro-Polarimeter for Planetary Exploration (SPEXone) on the NASA Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) mission, also the use of look-up tables is unfeasible because they will become too big. In this paper, we propose a new method for aerosol retrieval over ocean from MAP measurements using a neural network (NN) to model the ocean body reflection matrix. We apply the NN approach to synthetic SPEXone measurements and also to real data collected by SPEX airborne during the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign. We conclude that the NN approach is well capable for aerosol retrievals over ocean, introducing no significant error on the retrieved aerosol properties

[1]  Yong Xue,et al.  Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) , 2016, Remote. Sens..

[2]  Ruediger Lang,et al.  The multi-viewing multi-channel multi-polarisation imager – Overview of the 3MI polarimetric mission for aerosol and cloud characterization , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[3]  M. Mishchenko,et al.  Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter , 2001 .

[4]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[5]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[6]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[7]  Pavel Litvinov,et al.  Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements , 2011 .

[8]  Otto P. Hasekamp,et al.  LINTRAN v2.0: A linearised vector radiative transfer model for efficient simulation of satellite-born nadir-viewing reflection measurements of cloudy atmospheres , 2014 .

[9]  Jun Wang,et al.  An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework , 2016 .

[10]  I. Nabney,et al.  Improved neural network scatterometer forward models , 2001 .

[11]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[12]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[13]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Jun Wang,et al.  Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[15]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[16]  Michael J. Garay,et al.  Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA , 2018, Journal of Applied Remote Sensing.

[17]  Aaldert van Amerongen,et al.  Expected performance and error analysis for SPEXone, a multi-angle channeled spectropolarimeter for the NASA PACE mission , 2019, Optical Engineering + Applications.

[18]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[19]  Zhengqiang Li,et al.  Improving Remote Sensing of Aerosol Microphysical Properties by Near‐Infrared Polarimetric Measurements Over Vegetated Land: Information Content Analysis , 2017 .

[20]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[21]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .

[22]  David R. Thompson,et al.  Neural network radiative transfer for imaging spectroscopy , 2018, Atmospheric Measurement Techniques.

[23]  Aaldert van Amerongen,et al.  SPEXone: a compact multi-angle polarimeter , 2019, International Conference on Space Optics.

[24]  Dennis A. Hansell,et al.  Global distribution and dynamics of colored dissolved and detrital organic materials , 2002 .

[25]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[26]  G. Meister,et al.  Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency , 2015 .

[27]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[28]  Robert Frouin,et al.  Water-leaving contribution to polarized radiation field over ocean. , 2017, Optics express.

[29]  Liang Feng,et al.  Angular dependence of aerosol information content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites , 2017 .

[30]  J M Bland,et al.  Statistical methods for assessing agreement between two methods of clinical measurement , 1986 .

[31]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[32]  Johannes Quaas,et al.  Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions , 2019, Nature Communications.

[33]  Michael J. Garay,et al.  Joint retrieval of aerosol and water-leaving radiance frommultispectral, multiangular and polarimetric measurements over ocean , 2016 .

[34]  Patrick Eriksson,et al.  A neural network technique for inversion of atmospheric observations from microwave limb sounders , 2001 .

[35]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[36]  Vladimir M. Krasnopolsky,et al.  Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling , 2007 .

[37]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[38]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[39]  Christoph U. Keller,et al.  The SPEX-airborne multi-angle spectropolarimeter on NASA's ER-2 research aircraft: capabilities, data processing and data products , 2016 .

[40]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[41]  Henrique M. J. Barbosa,et al.  The Harp Hype Ran Gular Imaging Polarimeter and the Need for Small Satellite Payloads with High Science Payoff for Earth Science Remote Sensing , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[42]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[43]  Thomas Trautmann,et al.  A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach , 2001 .

[44]  Brian Cairns,et al.  SPEX airborne spectropolarimeter calibration and performance. , 2019, Applied optics.

[45]  R. Kahn,et al.  Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters , 2019, Atmospheric Measurement Techniques.

[46]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[47]  L. McKinna,et al.  Sensitivity of Inherent Optical Properties From Ocean Reflectance Inversion Models to Satellite Instrument Wavelength Suites , 2019, Front. Earth Sci..

[48]  Shun-ichi Amari,et al.  Annealed online learning in multilayer neural networks , 1999 .

[49]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[50]  R. Ferrare,et al.  NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation , 2009 .

[51]  Pasquale Sellitto,et al.  Global tropospheric ozone column retrievals from OMI data by means of neural networks , 2012 .

[52]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[53]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[54]  Piers M. Forster,et al.  The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus , 2004 .

[55]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[56]  Sonoyo Mukai,et al.  Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[57]  Yongxiang Hu,et al.  Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters. , 2018, Optics express.

[58]  Wei Li,et al.  Advantages of Measuring the Q Stokes Parameter in Addition to the Total Radiance I in the Detection of Absorbing Aerosols , 2018, Front. Earth Sci..

[59]  J. Féral,et al.  IPCC, 2014 - Climate Change 2014 : Synthesis Report. , 2015 .

[60]  Otto P. Hasekamp,et al.  Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[61]  Otto Hasekamp,et al.  Retrieval of aerosol microphysical and optical properties over land using a multimode approach , 2018, Atmospheric Measurement Techniques.

[62]  Christoph U. Keller,et al.  Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations , 2014 .

[63]  Brian Cairns,et al.  Aerosol retrievals from the ACEPOL Campaign , 2018 .

[64]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[65]  Christoph U. Keller,et al.  Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument , 2014 .

[66]  Filipe Aires,et al.  Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: Lorenz model case‐study , 2003 .

[67]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[68]  Barbara J. Gaitley,et al.  An analysis of global aerosol type as retrieved by MISR , 2015 .

[69]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[70]  William J. Blackwell,et al.  Neural network Jacobian analysis for high-resolution profiling of the atmosphere , 2012, EURASIP Journal on Advances in Signal Processing.

[71]  Bryan A. Franz,et al.  Radiative Transfer Modeling of Phytoplankton Fluorescence Quenching Processes , 2018, Remote. Sens..

[72]  Frédéric Chevallier,et al.  Use of a neural‐network‐based long‐wave radiative‐transfer scheme in the ECMWF atmospheric model , 2000 .

[73]  Didier Tanré,et al.  Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis , 2015 .

[74]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[75]  Norman G. Loeb,et al.  Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis , 2010 .

[76]  Brian Cairns,et al.  Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters. , 2006, Applied optics.

[77]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[78]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[79]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[80]  O. P. Hasekamp,et al.  A linearized vector radiative transfer model for atmospheric trace gas retrieval , 2002 .

[81]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[82]  Brian Cairns,et al.  Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: importance of spectral range and angular resolution , 2015, Atmospheric Measurement Techniques.

[83]  Michael J. Garay,et al.  Airborne multiangle spectropolarimetric imager (AirMSPI) observations over California during NASA's polarimeter definition experiment (PODEX) , 2013, Optics & Photonics - Optical Engineering + Applications.

[84]  Otto P. Hasekamp,et al.  Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing , 2005 .

[85]  K Stamnes,et al.  Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products. , 2018, Applied optics.

[86]  Jens Redemann,et al.  Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign , 2012 .

[87]  Pieternel F. Levelt,et al.  A neural network radiative transfer model approach applied toTROPOMI’s aerosol height algorithm , 2019 .