Balanced Incomplete Factorization
暂无分享,去创建一个
Miroslav Tuma | Rafael Bru | José Marín | José Mas | M. Tuma | R. Bru | J. Mas | J. Marín
[1] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..
[2] Alan Jennings,et al. A Compact Storage Scheme for the Solution of Symmetric Linear Simultaneous Equations , 1966, Comput. J..
[3] Yousef Saad,et al. On the Relations between ILUs and Factored Approximate Inverses , 2002, SIAM J. Matrix Anal. Appl..
[4] Mark T. Jones,et al. An improved incomplete Cholesky factorization , 1995, TOMS.
[5] Olaf Schenk,et al. Weighted Matchings for Preconditioning Symmetric Indefinite Linear Systems , 2006, SIAM J. Sci. Comput..
[6] Owe Axelsson,et al. Diagonally compensated reduction and related preconditioning methods , 1994, Numer. Linear Algebra Appl..
[7] YereminA. Yu.,et al. Factorized sparse approximate inverse preconditionings I , 1993 .
[8] Robert Bridson,et al. Ordering, Anisotropy, and Factored Sparse Approximate Inverses , 1999, SIAM J. Sci. Comput..
[9] Juana Cerdán,et al. Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula , 2003, SIAM J. Sci. Comput..
[10] D. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .
[11] N. I. Buleev. A numerical method for solving two-dimensional diffusion equations , 1960 .
[12] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..
[13] I. Gustafsson. A class of first order factorization methods , 1978 .
[14] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[15] Nicholas I. M. Gould,et al. A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations , 2007, TOMS.
[16] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[17] I. Duff,et al. The effect of ordering on preconditioned conjugate gradients , 1989 .
[18] Matthias Bollhöfer,et al. A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular Factors , 2003, SIAM J. Sci. Comput..
[19] Matthias Bollhöfer,et al. A robust ILU with pivoting based on monitoring the growth of the inverse factors , 2001 .
[20] Michele Benzi,et al. Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..
[21] M. A. Ajiz,et al. A robust incomplete Choleski‐conjugate gradient algorithm , 1984 .
[22] M. Tismenetsky,et al. A new preconditioning technique for solving large sparse linear systems , 1991 .
[23] Ingyu Lee,et al. Effective Preconditioning through Ordering Interleaved with Incomplete Factorization , 2005, SIAM J. Matrix Anal. Appl..
[24] Michele Benzi,et al. Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..
[25] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[26] Iain S. Duff,et al. The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..
[27] Michele Benzi,et al. Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..
[28] Iain S. Duff,et al. On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..
[29] Timothy A. Davis,et al. Algorithm 8 xx : a concise sparse Cholesky factorization package , 2004 .
[30] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[31] José Marín Mateos-Aparicio,et al. BLOCK APPROXIMATE INVERSE PRECONDITIONERS FOR SPARSE NONSYMMETRIC LINEAR SYSTEMS , 2010 .
[32] Rudolf A. Römer,et al. On Large-Scale Diagonalization Techniques for the Anderson Model of Localization , 2006, SIAM J. Sci. Comput..
[33] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[34] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its U , 1998 .
[35] Michele Benzi,et al. A Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems , 2003, SIAM J. Sci. Comput..
[36] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[37] Michele Benzi,et al. Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..
[38] Anne Greenbaum,et al. Approximating the inverse of a matrix for use in iterative algorithms on vector processors , 1979, Computing.
[39] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[40] T. Manteuffel. An incomplete factorization technique for positive definite linear systems , 1980 .
[41] R. P. Kendall,et al. An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations , 1968 .
[42] C. Micchelli,et al. Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .
[43] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition , 1998, Numer. Linear Algebra Appl..