Generalized double Wronskian solutions of the third-order isospectral AKNS equation

The generalized double Wronskian solutions of the third-order isospectral AKNS equation are obtained. Thus we found rational solutions, Matveev solutions, complexitons and interaction solutions. Moreover, rational solutions of the mKdV equation and KdV equation in double Wronskian form are constructed by reduction.

[1]  M. Wadati,et al.  A Generalization of Inverse Scattering Method , 1979 .

[2]  Soliton Solutions for Nonisospectral AKNS Equation by Hirota's Method , 2006 .

[3]  Qi-Ming Liu,et al.  Double Wronskian Solutions of the AKNS and the Classical Boussinesq Hierarchies , 1990 .

[4]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[5]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[6]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[7]  V. Matveev,et al.  Positon-positon and soliton-positon collisions: KdV case , 1992 .

[8]  J. Nimmo,et al.  Soliton solution of three differential-difference equations in wronskian form , 1983 .

[9]  J. Nimmo,et al.  Rational solutions of the Korteweg-de Vries equation in wronskian form , 1983 .

[10]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[11]  Deng-yuan Chen,et al.  N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation , 2005 .

[12]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[13]  Da‐jun Zhang Singular solutions in Casoratian form for two differential-difference equations , 2005 .

[14]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[15]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[16]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[17]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[18]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .