Tuning the Gas Selectivity of Tröger's Base Polyimide Membranes by Using Carboxylic Acid and Tertiary Base Interactions.

Polyimide-based materials provide attractive chemistries for the development of gas-separation membranes. Modification of inter- and intra-chain interactions is a route to improve the separation performance. In this work, copolyimides with Tröger's base (TB) monomers are designed and synthesized. In particular, a series of copolyimides is synthesized with different contents of carboxylic acid groups (0-50 wt %) to alter the inter- and intra-chain interactions and enhance the basicity of the TB-polyimides. A detailed thermal and structural analysis is provided for the new copolyimides. Gas permeation data reveal a tunable trend in separation performance with increasing carboxylic acid group content. Importantly, this is one of the few examples of copolyimide membranes materials that show enhanced plasticization resistance to high-pressure gas feeds through physical cross-linking.

[1]  M. Sadeghi,et al.  Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO2-Plasticization Resistance for Thin Film Gas Separation Membranes. , 2018, ACS applied materials & interfaces.

[2]  M. Sadeghi,et al.  Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes , 2017 .

[3]  Wai Fen Yong,et al.  Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification. , 2017, ChemSusChem.

[4]  H. Kusuda,et al.  Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers , 2017 .

[5]  M. Ferrari,et al.  Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.

[6]  Z. Wang,et al.  Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation , 2017 .

[7]  H. Kusuda,et al.  Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles , 2017, Nature Energy.

[8]  H. Kusuda,et al.  Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes , 2017 .

[9]  Liling Zhang,et al.  Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2–C4 alcohols dehydration via pervaporation , 2017 .

[10]  M. Sadeghi,et al.  Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles , 2016 .

[11]  M. Sadeghi,et al.  Plasticization resistant crosslinked polyurethane gas separation membranes , 2016 .

[12]  M. Sadeghi,et al.  Polyurethane gas separation membranes with ethereal bonds in the hard segments , 2016 .

[13]  J. C. Jansen,et al.  Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity , 2016 .

[14]  Won Hee Lee,et al.  High-strength, soluble polyimide membranes incorporating Tröger’s Base for gas separation , 2016 .

[15]  I. Pinnau,et al.  Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity. , 2016, Macromolecular rapid communications.

[16]  I. Pinnau,et al.  Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity , 2015 .

[17]  Dong Wang,et al.  Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation , 2014 .

[18]  I. Pinnau,et al.  Energy‐Efficient Hydrogen Separation by AB‐Type Ladder‐Polymer Molecular Sieves , 2014, Advanced materials.

[19]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[20]  Yu Seong Do,et al.  Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation , 2014 .

[21]  I. Pinnau,et al.  Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1 , 2014 .

[22]  Jian Jin,et al.  Tröger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Tröger's base on separation performance , 2014 .

[23]  W. Koros,et al.  Cross-Linkable Polyimide Membranes for Improved Plasticization Resistance and Permselectivity in Sour Gas Separations , 2013 .

[24]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[25]  M. Guiver,et al.  Polymer Rigidity Improves Microporous Membranes , 2013, Science.

[26]  J. C. Jansen,et al.  A Spirobifluorene‐Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation , 2012, Advanced materials.

[27]  Hasmukh A. Patel,et al.  Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. , 2012, Chemical communications.

[28]  Donald R Paul,et al.  Sub-TgCross-Linking of a Polyimide Membrane for Enhanced CO2Plasticization Resistance for Natural Gas Separation , 2011 .

[29]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[30]  H. Park,et al.  High performance polyimide with high internal free volume elements. , 2011, Macromolecular rapid communications.

[31]  S. Kuo,et al.  Preparing Low-Surface-Energy Polymer Materials by Minimizing Intermolecular Hydrogen-Bonding Interactions , 2009 .

[32]  I. Pinnau,et al.  Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) , 2009 .

[33]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[34]  Colin A. Scholes,et al.  Effects of Minor Components in Carbon Dioxide Capture Using Polymeric Gas Separation Membranes , 2009 .

[35]  W. Koros,et al.  Decarboxylation-Induced Cross-Linking of a Polyimide for Enhanced CO2 Plasticization Resistance , 2008 .

[36]  L. Robeson,et al.  The upper bound revisited , 2008 .

[37]  Chad L. Staiger,et al.  Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer , 2008 .

[38]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[39]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[40]  J. Cauich‐Rodríguez,et al.  TGA/FTIR study on thermal degradation of polymethacrylates containing carboxylic groups , 2006 .

[41]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[42]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[43]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[44]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[45]  Donald R Paul,et al.  Solid-State Covalent Cross-Linking of Polyimide Membranes for Carbon Dioxide Plasticization Reduction , 2003 .

[46]  Donald R Paul,et al.  The Effects of Crosslinking Chemistry on CO2 Plasticization of Polyimide Gas Separation Membranes , 2002 .

[47]  Nicholas M. Luscombe,et al.  Amino acid?base interactions: a three-dimensional analysis of protein?DNA interactions at an atomic level , 2001, Nucleic Acids Res..

[48]  William J. Koros,et al.  Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking , 1999 .

[49]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[50]  B. Freeman,et al.  Gas separation properties of aromatic polyamides containing hexafluoroisopropylidene groups , 1995 .

[51]  J. Maurer,et al.  Thermal characterization of poly(acrylic acid) , 1987 .