Mathematical Morphology: A Modern Approach in Image Processing Based on Algebra and Geometry

Mathematical morphology is a theory of image transformations and image functionals which is based on set-theoretical, geometrical, and topological concepts. The methodology is particularly useful for the analysis of the geometrical structure in an image. The main goal of this paper is to give an impression of the underlying philosophy and the mathematical theories which are relevant to this field. The following topics are discussed: introduction to mathematical morphology; generalization to complete lattices; morphological filters and their construction by iteration; geometrical aspects of morphology (e.g., convexity, distance, geodesic operators, granulometries, metric dilations, distance transform, cost functions); and extension of binary operators to grey-scale images.

[1]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[2]  Petros Maragos A Representation Theory for Morphological Image and Signal Processing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Alexander Toet,et al.  Graph morphology , 1992, J. Vis. Commun. Image Represent..

[5]  G. Banon,et al.  Minimal representations for translation-invariant set mappings by mathematical morphology , 1991 .

[6]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[7]  T. J. Willmore,et al.  Die innere Geometrie der metrischen Raume , 1963 .

[8]  Jos B. T. M. Roerdink,et al.  Mathematical morphology with non-commutative symmetry groups , 1993 .

[9]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[10]  Henk J. A. M. Heijmans Morphological filtering and iteration , 1990, Other Conferences.

[11]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[12]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[13]  Xinhua Zhuang,et al.  Morphological structuring element decomposition , 1986 .

[14]  Christian Lantuéjoul,et al.  Geodesic methods in quantitative image analysis , 1984, Pattern Recognit..

[15]  Edward R. Dougherty,et al.  Gray-scale granulometries compatible with spatial scalings , 1993, Signal Process..

[16]  Henk J. A. M. Heijmans A note on the umbra transform in gray-scale morphology , 1993, Pattern Recognit. Lett..

[17]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Henk J. A. M. Heijmans,et al.  Convergence, continuity, and iteration in mathematical morphology , 1992, J. Vis. Commun. Image Represent..

[19]  Jianning Xu Decomposition of Convex Polygonal Morphological Structuring Elements into Neighborhood Subsets , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Henk J. A. M. Heijmans,et al.  Discretization of morphological operators , 1992, J. Vis. Commun. Image Represent..

[21]  Jos B. T. M. Roerdink,et al.  On the construction of translation and rotation invariant morphological operators , 1990 .