The importance of seeing surface (effects).

[1]  J. Prestegard,et al.  Interaction of Fapp1 with Arf1 and PI4P at a membrane surface: an example of coincidence detection. , 2014, Structure.

[2]  Helen Thompson,et al.  US National Cancer Institute's new Ras project targets an old foe , 2013, Nature Medicine.

[3]  S. Subramaniam,et al.  HIV-1 envelope glycoprotein structure. , 2013, Current opinion in structural biology.

[4]  L. Kay,et al.  Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. , 2013, Journal of the American Chemical Society.

[5]  G. Wagner,et al.  Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. , 2013, Journal of the American Chemical Society.

[6]  A. Valencia,et al.  The Ras protein superfamily: Evolutionary tree and role of conserved amino acids , 2012, The Journal of cell biology.

[7]  Siddhartha Roy,et al.  Molecular Basis of Phosphatidylinositol 4-Phosphate and ARF1 GTPase Recognition by the FAPP1 Pleckstrin Homology (PH) Domain* , 2011, The Journal of Biological Chemistry.

[8]  J. Prestegard,et al.  Dynamic structure of membrane-anchored Arf•GTP , 2010, Nature Structural &Molecular Biology.

[9]  K. Simons,et al.  Structural basis of wedging the Golgi membrane by FAPP pleckstrin homology domains , 2010, EMBO reports.

[10]  Jianping Ding,et al.  Crystal structure of the ARL2-GTP-BART complex reveals a novel recognition and binding mode of small GTPase with effector. , 2009, Structure.

[11]  J. Prestegard,et al.  Structure and membrane interaction of myristoylated ARF1. , 2009, Structure.

[12]  A. Gorfe,et al.  Mechanisms of Ras membrane organization and signaling: Ras on a rocker , 2008, Cell cycle.

[13]  D. Alessi,et al.  FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P , 2004, Nature Cell Biology.