A BEM formulation using B-splines: I-uniform blending functions
暂无分享,去创建一个
Carlos Alberto Brebbia | Luiz C. Wrobel | C. Brebbia | L. Wrobel | J. Cabral | Jaime Joaquim da Silva Pereira Cabral
[1] W. J. Gordon,et al. B-SPLINE CURVES AND SURFACES , 1974 .
[2] James R. Salmon,et al. Cubic spline boundary elements , 1981 .
[3] C. Brebbia,et al. A BEM formulation using B-splines: II-multiple knots and non-uniform blending functions , 1991 .
[4] Massimo Guiggiani,et al. A self‐adaptive co‐ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1988 .
[5] J. Telles. A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .
[6] Carlos Alberto Brebbia,et al. The Boundary Element Method for Engineers , 1978 .
[7] S. Timoshenko,et al. Theory of elasticity , 1975 .
[8] Carlos Alberto Brebbia,et al. Boundary Elements: An Introductory Course , 1989 .
[9] J. C. Ortiz,et al. Development of Overhauser Splines as Boundary Elements , 1987 .
[10] C. Brebbia,et al. Boundary Element Techniques , 1984 .
[11] Wayne Tiller,et al. Rational B-Splines for Curve and Surface Representation , 1983, IEEE Computer Graphics and Applications.
[12] Fujio Yamaguchi,et al. A new curve fitting method using a CRT computer display , 1978 .
[13] J. C. Ortiz,et al. Overhauser Boundary Elements in Potential Theory and Linear Elastostatics , 1988 .