Copper mobilization in the lower continental crust beneath cratonic margins, a Cu isotope perspective

[1]  S. Foley,et al.  Gold endowment of the metasomatized lithospheric mantle for giant gold deposits: Insights from lamprophyre dykes , 2021, Geochimica et Cosmochimica Acta.

[2]  W. Griffin,et al.  Characterization of the metasomatizing agent in the upper mantle beneath the northern Pannonian Basin based on Raman imaging, FIB-SEM, and LA-ICP-MS analyses of silicate melt inclusions in spinel peridotite , 2021, American Mineralogist.

[3]  F. Moynier,et al.  Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate , 2020 .

[4]  E. al.,et al.  Elevated magma fluxes deliver high-Cu magmas to the upper crust , 2020, Geology.

[5]  F. Moynier,et al.  Zinc isotopic composition of the lower continental crust estimated from lower crustal xenoliths and granulite terrains , 2020 .

[6]  Cin-Ty A. Lee,et al.  Sulfide-bearing cumulates in deep continental arcs: The missing copper reservoir , 2020 .

[7]  Ying Xia,et al.  Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits , 2020, National science review.

[8]  Cin-Ty A. Lee,et al.  How to make porphyry copper deposits , 2020 .

[9]  Zhaochu Hu,et al.  High-precision CopperandZinc Isotopic Measurements in Igneous RockStandards UsingLarge-geometry MC-ICP-MS , 2019 .

[10]  Cin-Ty A. Lee,et al.  Recycling reduced iron at the base of magmatic orogens , 2019 .

[11]  Y. Xia,et al.  The effect of core segregation on the Cu and Zn isotope composition of the silicate Moon , 2019, Geochemical Perspectives Letters.

[12]  H. Becker,et al.  Copper Isotope Variations During Magmatic Migration in the Mantle: Insights From Mantle Pyroxenites in Balmuccia Peridotite Massif , 2019, Journal of Geophysical Research: Solid Earth.

[13]  F. Chu,et al.  Magmatic sulfide formation and oxidative dissolution in the SW Okinawa Trough: A precursor to metal-bearing magmatic fluid , 2019, Geochimica et Cosmochimica Acta.

[14]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[15]  R. Klemd,et al.  In Situ Chalcophile and Siderophile Element Behavior in Sulfides from Moroccan Middle Atlas Spinel Peridotite Xenoliths during Metasomatism and Weathering , 2019, Minerals.

[16]  D. Harlov,et al.  Silicate, Oxide and Sulphide Trends in Neo-Archean Rocks from the Nilgiri Block, Southern India: the Role of Fluids During High-grade Metamorphism , 2019, Journal of Petrology.

[17]  Jonguk Kim,et al.  Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc , 2019, Geochimica et Cosmochimica Acta.

[18]  R. Mathur,et al.  Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni–Cu mineralization system , 2019, Geochimica et Cosmochimica Acta.

[19]  W. Griffin,et al.  Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting , 2018, Geology.

[20]  J. Escartín,et al.  Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36°14′N) , 2018, Earth and Planetary Science Letters.

[21]  S. Borensztajn,et al.  Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros , 2018, Earth and Planetary Science Letters.

[22]  R. Maas,et al.  Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust , 2018 .

[23]  Huimin Yu,et al.  Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps , 2017 .

[24]  D. Symons,et al.  Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni–Cu deposit, NW China , 2017 .

[25]  F. Jenner Cumulate causes for the low contents of sulfide-loving elements in the continental crust , 2017 .

[26]  T. Cope Phanerozoic magmatic tempos of North China , 2017 .

[27]  F. Huang,et al.  Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism , 2017, Contributions to Mineralogy and Petrology.

[28]  B. Wood,et al.  The S content of silicate melts at sulfide saturation: New experiments and a model incorporating the effects of sulfide composition , 2017 .

[29]  T. Fujii,et al.  The Isotope Geochemistry of Zinc and Copper , 2017 .

[30]  Sheng‐Ao Liu,et al.  Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China , 2016 .

[31]  S. Foley,et al.  Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones , 2016 .

[32]  G. Wörner,et al.  Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany) , 2016, Contributions to Mineralogy and Petrology.

[33]  Hong‐fu Zhang,et al.  Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites , 2016 .

[34]  M. Fantle,et al.  Copper Isotopic Perspectives on Supergene Processes: Implications for the Global Cu Cycle , 2015 .

[35]  Wei Yang,et al.  Copper isotopic composition of the silicate Earth , 2015 .

[36]  B. Wood,et al.  The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides , 2015 .

[37]  D. Baker,et al.  The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts , 2015 .

[38]  F. Moynier,et al.  Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation , 2015 .

[39]  Zhong‐Yuan Ren,et al.  Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source , 2015 .

[40]  Yongjun Lu,et al.  A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones , 2015 .

[41]  I. Campbell,et al.  The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi–Motutahi Lavas, Tonga Rear Arc , 2015 .

[42]  F. Albarède,et al.  Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments , 2014 .

[43]  J. Brenan,et al.  Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements , 2014 .

[44]  Xing Ding,et al.  Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions , 2014 .

[45]  D. Sherman Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory , 2013 .

[46]  F. Albarède,et al.  Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology , 2013 .

[47]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[48]  E. Ripley,et al.  Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis? , 2013 .

[49]  A. Audétat,et al.  Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions , 2012 .

[50]  D. Harlov The potential role of fluids during regional granulite-facies dehydration in the lower crust , 2012 .

[51]  R. Dasgupta,et al.  Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation , 2012, Science.

[52]  J. Mavrogenes,et al.  The Magnetite Crisis in the Evolution of Arc-related Magmas and the Initial Concentration of Au, Ag and Cu , 2010 .

[53]  Shan Gao,et al.  Garnet-rich granulite xenoliths from the Hannuoba basalts, North China: Petrogenesis and implications for the Mesozoic crust-mantle interaction , 2010 .

[54]  R. Walker,et al.  Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes , 2010 .

[55]  J. Stix,et al.  Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids , 2010 .

[56]  R. Sillitoe Porphyry Copper Systems , 2010 .

[57]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[58]  D. Borrok,et al.  Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks , 2009 .

[59]  Yue-heng Yang,et al.  Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications , 2006 .

[60]  Xuan‐Ce Wang,et al.  U–Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust , 2004 .

[61]  L. Meinert,et al.  Copper isotope ratios in magmatic and hydrothermal ore-forming environments , 2003 .

[62]  E. Watson,et al.  Isotope fractionation by chemical diffusion between molten basalt and rhyolite , 2003 .

[63]  J. Brophy,et al.  Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe , 2002 .

[64]  Ulrich Weser,et al.  Mass fractionation processes of transition metal isotopes , 2002 .

[65]  R. Carlson,et al.  Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton , 2002 .

[66]  Yigang Xu Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China , 2002 .

[67]  Shenghong Hu,et al.  Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition , 2001 .

[68]  K. Lodders,et al.  Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition , 2001 .

[69]  Peter A. Cawood,et al.  Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution , 2001 .

[70]  Francis Albarède,et al.  Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry , 1999 .

[71]  D. Harlov,et al.  Oxide and sulphide minerals in highly oxidized, Rb‐depleted, Archaean granulites of the Shevaroy Hills Massif, South India: Oxidation states and the role of metamorphic fluids , 1997 .

[72]  J. Brophy,et al.  Solubility of copper in a sulfur-free mafic melt , 1995 .

[73]  J. Bigeleisen,et al.  Calculation of Equilibrium Constants for Isotopic Exchange Reactions , 1947 .