ZnO cathode buffer layers for inverted polymer solar cells

This article provides an overview of the design, fabrication and characterization of the most widely used cathode buffer layers (CBLs) constructed using pristine zinc oxide (ZnO), doped-ZnO, and ZnO-based composites as well as the surface modified ZnO-based CBLs for the improvement of power conversion efficiency (PCE) and long-term device stability of inverted polymer solar cells (PSCs). To achieve high PCE in inverted PSCs, the selection of an appropriate material to form high quality CBLs so as to optimize the electron collection and transport is particularly important. ZnO has been the most extensively studied material for CBL of inverted PSCs in view of its relatively high electron mobility, optical transparency, ease of being synthesized with low cost solution methods at low temperature, versatile morphologies, and being environmentally stable. It is pointed out in this review that the electronic processes at the interface between the ZnO CBL and polymer active layer play an important role in determining the solar cells performance. This review attempts to deliver better understanding with regard of the impacts of (1) morphology, (2) thickness, (3) nanostructures, (4) doping, (5) surface modification and (6) composition/hybrids of ZnO CBLs on the inverted PSCs performance. Well understanding the interfacial processes in PSCs is believed also a benefit to the emerging perovskite solar cells in view of their similar energy levels and device structures.

[1]  R. Diana,et al.  Influence of annealing treatments on solution-processed ZnO film deposited on ITO substrate as electron transport layer for inverted polymer solar cells , 2015 .

[2]  G. Andersson,et al.  Electronic and chemical properties of ZnO in inverted organic photovoltaic devices , 2015 .

[3]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[4]  Xinhua Ouyang,et al.  Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte , 2015, Nature Photonics.

[5]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[6]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[7]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[8]  Wenjun Zhang,et al.  Neutral amine based alcohol-soluble interface materials for inverted polymer solar cells: realizing high performance and overcoming solvent erosion. , 2015, Chemical communications.

[9]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[10]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[11]  A. Amassian,et al.  Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution‐Processed Al‐Doped ZnO Electron Transporting Layer , 2015 .

[12]  Moon-Sung Kang,et al.  Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells. , 2015, Chemical communications.

[13]  N. Zheng,et al.  Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. , 2015, Nanoscale.

[14]  K. Yuan,et al.  Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells. , 2015, Nanoscale.

[15]  Weidong Yu,et al.  Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer , 2015 .

[16]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[17]  R. Mane,et al.  Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells. , 2015, ACS applied materials & interfaces.

[18]  Zhan'ao Tan,et al.  Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells , 2015 .

[19]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[20]  S. Im,et al.  Effect of ZnO nanoparticle morphology and post-treatment with zinc acetate on buffer layer in inverted organic photovoltaic cells , 2015 .

[21]  Ikerne Etxebarria,et al.  Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10% , 2015 .

[22]  Jian-Ming Jiang,et al.  Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells. , 2015, ACS applied materials & interfaces.

[23]  F. Gao,et al.  Ethanedithiol Treatment of Solution‐Processed ZnO Thin Films: Controlling the Intragap States of Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics , 2015 .

[24]  O. Mohammed,et al.  Ambient Layer‐by‐Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells , 2015 .

[25]  Hyung Il Park,et al.  Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal–Carbon Nanotube Hybrids , 2015, Advanced materials.

[26]  W. Kim,et al.  A nano-grid structure made of perovskite SrTiO3 nanowires for efficient electron transport layers in inverted polymer solar cells. , 2015, Nanoscale.

[27]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[28]  Yongye Liang,et al.  Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells , 2015 .

[29]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[30]  Bertrand J. Tremolet de Villers,et al.  Stability of inverted organic solar cells with ZnO contact layers deposited from precursor solutions , 2015 .

[31]  Hyosung Choi,et al.  Silver‐Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics , 2015 .

[32]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[33]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[34]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[35]  Ching-Fuh Lin,et al.  Enhancing performance of inverted polymer solar cells using two-growth ZnO nanorods , 2014 .

[36]  Yu-Shan Cheng,et al.  Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer , 2014, Scientific Reports.

[37]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[38]  Ken Ishikawa,et al.  Recent progress in degradation and stabilization of organic solar cells , 2014 .

[39]  Xiaofang Li,et al.  Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells. , 2014, ACS applied materials & interfaces.

[40]  Tobin J. Marks,et al.  High‐Efficiency Inverted Polymer Photovoltaics via Spectrally Tuned Absorption Enhancement , 2014 .

[41]  O. Inganäs,et al.  Improving Cathodes with a Polymer Interlayer in Reversed Organic Solar Cells , 2014 .

[42]  Ning Li,et al.  Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors , 2014 .

[43]  Junbiao Peng,et al.  Aqueous Solution Processed, Ultrathin ZnO Film with Low Conversion Temperature as the Electron Transport Layer in the Inverted Polymer Solar Cells , 2014 .

[44]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[45]  In-Wook Hwang,et al.  Top‐Down Approach for Nanophase Reconstruction in Bulk Heterojunction Solar Cells , 2014, Advanced materials.

[46]  Andrés J. García,et al.  Improved Performance in Bulk Heterojunction Organic Solar Cells with a Sol‐Gel MgZnO Electron‐Collecting Layer , 2014 .

[47]  S. Jang,et al.  Effects of ultraviolet–ozone treatment on organic-stabilized ZnO nanoparticle-based electron transporting layers in inverted polymer solar cells , 2014 .

[48]  J. Parisi,et al.  Role of Oxygen Adsorption in Nanocrystalline ZnO Interfacial Layers for Polymer−Fullerene Bulk Heterojunction Solar Cells , 2014, 1904.10916.

[49]  Jin Young Kim,et al.  Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device , 2014 .

[50]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[51]  S. Yoshikawa,et al.  Fabrication of efficient organic and hybrid solar cells by fine channel mist spray coating , 2014 .

[52]  Aram Amassian,et al.  Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers , 2014 .

[53]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[54]  Chun-Hsien Chou,et al.  Plasmonic nanostructures for light trapping in organic photovoltaic devices. , 2014, Nanoscale.

[55]  H. Yao,et al.  Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure , 2014 .

[56]  Junfeng Fang,et al.  Performance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layer , 2014 .

[57]  Long Ye,et al.  Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain , 2014 .

[58]  G. Cao,et al.  The effects of Ta2O5–ZnO films as cathodic buffer layers in inverted polymer solar cells , 2014 .

[59]  Chain‐Shu Hsu,et al.  Applications of functional fullerene materials in polymer solar cells , 2014 .

[60]  Sumei Huang,et al.  Enhanced efficiency of inverted polymer solar cells using two-step sputtered ZnO as cathode interfacial layer , 2014 .

[61]  H. Lyu,et al.  8.9% Single‐Stack Inverted Polymer Solar Cells with Electron‐Rich Polymer Nanolayer‐Modified Inorganic Electron‐Collecting Buffer Layers , 2014 .

[62]  Z. Yin,et al.  Bandgap Tunable Zn1‐xMgxO Thin Films as Highly Transparent Cathode Buffer Layers for High‐Performance Inverted Polymer Solar Cells , 2014 .

[63]  Xianyu Deng,et al.  Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode , 2014 .

[64]  L. Dai,et al.  Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells , 2014 .

[65]  Bo Yeol Seo,et al.  Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells , 2014, Scientific Reports.

[66]  A. Jen,et al.  Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2‐b]thiophene‐Based Polymers and Devices , 2014 .

[67]  G. Cao,et al.  The effect of SrTiO3:ZnO as cathodic buffer layer for inverted polymer solar cells , 2014 .

[68]  S. Yoo,et al.  Effect of Self-Assembled Monolayer Treated ZnO on the Photovoltaic Properties of Inverted Polymer Solar Cells , 2014 .

[69]  Bo Yeol Seo,et al.  Enhanced Stability of Organic Photovoltaics by Additional ZnO Layers on Rippled ZnO Electron-collecting Layer using Atomic Layer Deposition , 2014 .

[70]  Ying Zhao,et al.  Effective light trapping enhanced near-UV/blue light absorption in inverted polymer solar cells via sol–gel textured Al-doped ZnO buffer layer , 2014 .

[71]  Sumei Huang,et al.  Dependence of the performance of inverted polymer solar cells on thickness of an electron selective ZnO layer deposited by magnetron sputtering , 2014 .

[72]  S. Chand,et al.  A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells , 2014 .

[73]  Chunxiang Zhu,et al.  Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers , 2014 .

[74]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[75]  Jiyun Song,et al.  High performance inverted organic solar cells with solution processed Ga-doped ZnO as an interfacial electron transport layer , 2013 .

[76]  M. Ketabchi,et al.  Density-controlled ZnO nanorod arrays in polymer solar cells based on Poly(3-hexylthiophene) and indene-C60 Bis-Adduct , 2013, Electronic Materials Letters.

[77]  Baoquan Sun,et al.  Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated by in situ cross-linked three-dimensional polymer network , 2013, Nanotechnology.

[78]  H. Sirringhaus,et al.  Improved Performance and Stability of Inverted Organic Solar Cells with Sol–Gel Processed, Amorphous Mixed Metal Oxide Electron Extraction Layers Comprising Alkaline Earth Metals , 2013 .

[79]  Zhao Ying,et al.  Effects of annealing rate and morphology of sol—gel derived ZnO on the performance of inverted polymer solar cells , 2013 .

[80]  Thomas Riedl,et al.  Overcoming the “Light‐Soaking” Issue in Inverted Organic Solar Cells by the Use of Al:ZnO Electron Extraction Layers , 2013 .

[81]  Steven Van Passel,et al.  Life cycle analyses of organic photovoltaics: a review , 2013 .

[82]  G. Cao,et al.  Growth of vertically aligned ZnO nanowalls for inverted polymer solar cells , 2013 .

[83]  Chang Ming Li,et al.  Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells , 2013 .

[84]  Seok‐In Na,et al.  Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis , 2013 .

[85]  Ziyang Hu,et al.  Effect of sol–gel derived ZnO annealing rate on light-trapping in inverted polymer solar cells , 2013 .

[86]  T. Alford,et al.  Improved performance of ZnO nanostructured bulk heterojunction organic solar cells with nanowire-density modified by yttrium chloride introduction into solution , 2013 .

[87]  Yuejin Zhu,et al.  Inverted polymer solar cells with a boron-doped zinc oxide layer deposited by metal organic chemical vapor deposition , 2013 .

[88]  S. Ramakrishna,et al.  Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells. , 2013, ACS applied materials & interfaces.

[89]  Z. Yin,et al.  Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt. , 2013, ACS applied materials & interfaces.

[90]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[91]  Thanh Luan Nguyen,et al.  Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrrole‐Based Low‐Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electron‐Transport Layers , 2013, Advanced materials.

[92]  Chunyu Ma,et al.  Surface states of ZnO nanoparticles effect on the performance of inverted-organic solar cells , 2013 .

[93]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[94]  K. Musselman,et al.  High performance inverted bulk heterojunction solar cells by incorporation of dense, thin ZnO layers made using atmospheric atomic layer deposition , 2013 .

[95]  Shinuk Cho,et al.  Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics. , 2013, ACS applied materials & interfaces.

[96]  M. J. Tan,et al.  Biopolymer as an electron selective layer for inverted polymer solar cells , 2013 .

[97]  G. Andersson,et al.  Role of zinc oxide thickness on the photovoltaic performance of laminated organic bulk-heterojunction solar cells , 2013 .

[98]  S. Darling,et al.  Lanthanides: new metallic cathode materials for organic photovoltaic cells. , 2013, Physical chemistry chemical physics : PCCP.

[99]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[100]  Jr-hau He,et al.  Toward high efficiency of inverted organic solar cells: Concurrent improvement in optical and electrical properties of electron transport layers , 2013 .

[101]  K. Yuan,et al.  Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers. , 2013, ACS applied materials & interfaces.

[102]  D. Bradley,et al.  Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells , 2013 .

[103]  B. Lee,et al.  Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles , 2013 .

[104]  M. J. Tan,et al.  Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. , 2013, ACS applied materials & interfaces.

[105]  Joo-Yong Lee,et al.  Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway , 2013, Nature Communications.

[106]  S. Jang,et al.  Performance optimization of low-temperature-annealed solution-processable ZnO buffer layers for inverted polymer solar cells , 2013 .

[107]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[108]  Hao Jiang,et al.  Texture design of electrodes for efficiency enhancement of organic solar cells , 2013 .

[109]  T. Pullerits,et al.  Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. , 2013, ACS applied materials & interfaces.

[110]  A. Facchetti,et al.  Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. , 2012, Nano letters.

[111]  Thomas Kirchartz,et al.  Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge. , 2012, The journal of physical chemistry letters.

[112]  O. Inganäs,et al.  Influences of Surface Roughness of ZnO Electron Transport Layer on the Photovoltaic Performance of Organic Inverted Solar Cells , 2012 .

[113]  Robert Kostecki,et al.  Nanomaterials for renewable energy production and storage. , 2012, Chemical Society reviews.

[114]  Song Chen,et al.  Inverted Polymer Solar Cells with Reduced Interface Recombination , 2012 .

[115]  Shui-Tong Lee,et al.  Solution-processed inverted polymer solar cells using chemical bath deposited CdS films as electron collecting layer , 2012 .

[116]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[117]  D. Wilkinson,et al.  Nano-architecture and material designs for water splitting photoelectrodes. , 2012, Chemical Society reviews.

[118]  G. Cheng,et al.  Thermal-annealing-free inverted polymer solar cells using ZnO/Cs2CO3 bilayer as electron-selective layer , 2012 .

[119]  Fei Huang,et al.  Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte , 2012 .

[120]  L. Lan,et al.  High Efficiency and High Voc Inverted Polymer Solar Cells Based on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer on ITO Cathode , 2012 .

[121]  E. Samulski,et al.  Minimizing interfacial losses in inverted organic solar cells comprising Al-doped ZnO , 2012 .

[122]  Guozhong Cao,et al.  Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells , 2012 .

[123]  S. Shao,et al.  High‐Efficiency Inverted Polymer Solar Cells with Transparent and Work‐Function Tunable MoO3‐Al Composite Film as Cathode Buffer Layer , 2012, Advanced materials.

[124]  L. Dai,et al.  Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High‐Performance Bulk Heterojunction Solar Cells , 2012, Advanced materials.

[125]  Than Zaw Oo,et al.  Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell , 2012 .

[126]  Christoph J. Brabec,et al.  Increasing the Fill Factor of Inverted P3HT:PCBM Solar Cells Through Surface Modification of Al‐Doped ZnO via Phosphonic Acid‐Anchored C60 SAMs , 2012 .

[127]  Amit Kumar,et al.  Highly efficient, inverted polymer solar cells with indium tin oxide modified with solution-processed zwitterions as the transparent cathode. , 2012, ACS applied materials & interfaces.

[128]  F. Krebs,et al.  Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance , 2012 .

[129]  F. Krebs,et al.  Enhancing functionality of ZnO hole blocking layer in organic photovoltaics , 2012 .

[130]  W. Su,et al.  Enhanced photocurrent and stability of inverted polymer/ZnO-nanorod solar cells by 3-hydroxyflavone additive , 2012 .

[131]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[132]  Karl Leo,et al.  Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning , 2012, Advanced materials.

[133]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[134]  Yong Cao,et al.  High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO , 2012 .

[135]  K. Sreekumar,et al.  Spray pyrolysed In2S3 thin films: A potential electron selective layer for large area inverted bulk‐heterojunction polymer solar cells , 2012 .

[136]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[137]  Jin Jang,et al.  Electrical properties of inverted poly(3-hexylthiophene): Methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk hetero-junction solar cell with Cs2CO3 and MoO3 layers , 2011 .

[138]  Shui-Tong Lee,et al.  Inverted polymer solar cells with atomic layer deposited CdS film as an electron collection layer , 2011 .

[139]  Yongsheng Chen,et al.  Graphene – A Promising Material for Organic Photovoltaic Cells , 2011, Advanced materials.

[140]  Luping Yu,et al.  How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach , 2011 .

[141]  J. Ajuria,et al.  Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[142]  K. Sun,et al.  Indium tin oxide modified with sodium compounds as cathode of inverted polymer solar cells , 2011 .

[143]  Young Dok Kim,et al.  Spontaneous formation of nanoripples on the surface of ZnO thin films as hole-blocking layer of inverted organic solar cells , 2011 .

[144]  Mi Young Jo,et al.  Ultrathin TiO2 Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell , 2011 .

[145]  Yuning Li,et al.  Efficiency enhancement of inverted organic photovoltaic devices with ZnO nanopillars fabricated on F , 2011 .

[146]  F. Krebs,et al.  Electrical and Photo‐Induced Degradation of ZnO Layers in Organic Photovoltaics , 2011 .

[147]  Frederik C. Krebs,et al.  The OE-A OPV demonstrator anno domini 2011 , 2011 .

[148]  Zhigang Yin,et al.  Applications of ZnO in organic and hybrid solar cells , 2011 .

[149]  P. Pinel,et al.  A review of available methods for seasonal storage of solar thermal energy in residential applications , 2011 .

[150]  Christoph J. Brabec,et al.  Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer , 2011 .

[151]  Yue Hao,et al.  Inverted Organic Photovoltaic Cells with Solution-Processed Zinc Oxide as Electron Collecting Layer , 2011 .

[152]  Chang Su Kim,et al.  Effect of electron transport layer crystallinity on the transient characteristics of inverted organic solar cells , 2011 .

[153]  Kyoung-Kok Kim,et al.  Low-temperature growth and characterization of ZnO thin films for flexible inverted organic solar cells , 2011 .

[154]  Siew Yee Lim,et al.  Measuring dopant concentrations in p-type silicon using iron-acceptor pairing monitored by band-to-band photoluminescence , 2011 .

[155]  Ziyang Hu,et al.  Influence of ZnO interlayer on the performance of inverted organic photovoltaic device , 2011 .

[156]  Christoph J. Brabec,et al.  Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells , 2011 .

[157]  Kah-Yoong Chan,et al.  Zinc oxide films prepared by sol–gel spin coating technique , 2011 .

[158]  J. Park,et al.  ITO-free inverted polymer solar cells using a GZO cathode modified by ZnO , 2011 .

[159]  Jian Zhang,et al.  Recent development of the inverted configuration organic solar cells , 2011 .

[160]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[161]  C. Chang,et al.  Efficient and air-stable plastics-based polymer solar cells enabled by atomic layer deposition , 2011 .

[162]  Junsheng Yu,et al.  Well-aligned ZnO nanorod arrays from diameter-controlled growth and their application in inverted polymer solar cell , 2011 .

[163]  D. Carroll,et al.  Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices , 2011 .

[164]  Rene Lopez,et al.  Photonic Crystal Geometry for Organic Polymer:Fullerene Standard and Inverted Solar Cells , 2011 .

[165]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[166]  M. McLachlan,et al.  Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers , 2011 .

[167]  Andrea Bernardi,et al.  The role of buffer layers in polymer solar cells , 2011 .

[168]  Junpeng Liu,et al.  Charge transport in flexible solar cells based on conjugated polymer and ZnO nanoparticulate thin films , 2011 .

[169]  Sun Young Park,et al.  Influence of surface roughness of aluminum-doped zinc oxide buffer layers on the performance of inverted organic solar cells , 2011 .

[170]  J. Park,et al.  Enhanced Performance in Polymer Solar Cells by Surface Energy Control , 2010 .

[171]  Andrew J. Medford,et al.  The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics , 2010 .

[172]  K. Sreekumar,et al.  Inverted polymer solar cells with indium sulfide electron selective layer , 2010 .

[173]  K. Loh,et al.  Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode , 2010 .

[174]  Yongfang Li,et al.  Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. , 2010, Journal of the American Chemical Society.

[175]  Guozhong Cao,et al.  Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes , 2010 .

[176]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[177]  Lamia Znaidi,et al.  Sol–gel-deposited ZnO thin films: A review , 2010 .

[178]  Jan Fyenbo,et al.  Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing , 2010 .

[179]  William J. Potscavage,et al.  Electrical and Optical Properties of ZnO Processed by Atomic Layer Deposition in Inverted Polymer Solar Cells , 2010 .

[180]  Xiao Wei Sun,et al.  Low work function metal modified ITO as cathode for inverted polymer solar cells , 2010 .

[181]  Mikkel Jørgensen,et al.  Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. , 2010, ACS applied materials & interfaces.

[182]  Sang‐Woo Kim,et al.  Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells , 2010, Nanoscale research letters.

[183]  Sang‐Woo Kim,et al.  Inverted Organic Solar Cells with ZnO Thin Films Prepared by Sol–Gel Method , 2010 .

[184]  Bernard Kippelen,et al.  Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition , 2010 .

[185]  Chin-Hsiang Chang,et al.  Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer , 2010 .

[186]  Dukhyun Choi,et al.  Enhanced Power Conversion Efficiency of Inverted Organic Solar Cells with a Ga-Doped ZnO Nanostructured Thin Film Prepared Using Aqueous Solution , 2010 .

[187]  J. Cho,et al.  Inorganic/organic heterojunction solar cell fabricated with ZnO nanowires , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[188]  Hong Ma,et al.  Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells , 2010 .

[189]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[190]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[191]  K. Ho,et al.  Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells , 2010 .

[192]  Xiangyin Li,et al.  Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol–gel method , 2010 .

[193]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[194]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[195]  Pei-Jung Li,et al.  Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. , 2010, Journal of the American Chemical Society.

[196]  Junbiao Peng,et al.  Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure , 2010 .

[197]  Yakup Hames,et al.  Electrochemically grown ZnO nanorods for hybrid solar cell applications , 2010 .

[198]  H. Demir,et al.  Improved Inverted Organic Solar Cells With a Sol–Gel Derived Indium-Doped Zinc Oxide Buffer Layer , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[199]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[200]  Ching-Fuh Lin,et al.  Enhancing performance of organic–inorganic hybrid solar cells using a fullerene interlayer from all-solution processing , 2010 .

[201]  Michele Maggini,et al.  Polymer Solar Cells: Recent Approaches and Achievements , 2010 .

[202]  Sheng-Fu Horng,et al.  Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer , 2010 .

[203]  Yang Yang,et al.  ZnO nano-ridge structure and its application in inverted polymer solar cell , 2009 .

[204]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[205]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[206]  Yoshitaka Kawahara,et al.  Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. , 2009, ACS applied materials & interfaces.

[207]  Ching-Fuh Lin,et al.  Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells , 2009 .

[208]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[209]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[210]  Soeren Steudel,et al.  Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells , 2009 .

[211]  Yoshitaka Kawahara,et al.  Characterization of ZnS-layer-inserted bulk-heterojunction organic solar cells by ac impedance spectroscopy , 2009 .

[212]  Sungeun Park,et al.  Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode , 2009 .

[213]  Takayuki Kuwabara,et al.  Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode , 2009 .

[214]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[215]  J. Bernède,et al.  ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells , 2009 .

[216]  T. Balasubramanian,et al.  Optimization of Zn1−xAlxO film for antireflection coating by RF sputtering , 2009 .

[217]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[218]  Tsung-Hsun Lee,et al.  An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers , 2009 .

[219]  Rattanavoravipa Thitima,et al.  Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells , 2009 .

[220]  E. Guziewicz,et al.  Structural and optical properties of low-temperature ZnO films grown by atomic layer deposition with diethylzinc and water precursors , 2009 .

[221]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[222]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[223]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[224]  M. Welland,et al.  The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells , 2008 .

[225]  Kazuhito Hashimoto,et al.  Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer , 2008 .

[226]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[227]  Alex K.-Y. Jen,et al.  Polymer Solar Cells That Use Self‐Assembled‐Monolayer‐ Modified ZnO/Metals as Cathodes , 2008 .

[228]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[229]  Paulo Roberto Mei,et al.  New processes for the production of solar-grade polycrystalline silicon: A review , 2008 .

[230]  S. O’Brien,et al.  ZnO thin films prepared by a single step sol-gel process , 2008 .

[231]  S. Shaheen,et al.  The Locus of Free Charge-Carrier Generation in Solution-Cast Zn1–xMgxO/Poly(3-hexylthiophene) Bilayers for Photovoltaic Applications† , 2007 .

[232]  R. Janssen,et al.  Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene) , 2007 .

[233]  Kazuhito Hashimoto,et al.  Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices , 2007 .

[234]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[235]  D. Bradley,et al.  Degradation of organic solar cells due to air exposure , 2006 .

[236]  Vishal Shrotriya,et al.  Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells , 2006 .

[237]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[238]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[239]  Valentin D. Mihailetchi,et al.  Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells , 2006 .

[240]  André Moliton,et al.  How to model the behaviour of organic photovoltaic cells , 2006 .

[241]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[242]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[243]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[244]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[245]  David P. Norton,et al.  ZnO nanowire growth and devices , 2004 .

[246]  K. Yoshino,et al.  Effect of ZnO layer on characteristics of conducting polymer/C60 photovoltaic cell , 2004 .

[247]  D. Vanmaekelbergh,et al.  Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. , 2002, Physical review letters.

[248]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[249]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[250]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[251]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[252]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[253]  Toshinobu Yoko,et al.  Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution , 1997 .

[254]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[255]  J. H. Kim,et al.  Effect of self-assembled monolayer treated ZnO as an electron transporting layer on the photovoltaic properties of inverted type polymer solar cells , 2014 .

[256]  P. Duxbury,et al.  High-performance inverted solar cells with a controlled ZnO buffer layer , 2014 .

[257]  Liang Sun,et al.  Low-temperature solution-processed ZnO nanocrystalline interfacial layer with antireflective effect for efficient inverted polymer solar cells , 2014 .

[258]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[259]  W. Marsden I and J , 2012 .

[260]  Mikkel Jørgensen,et al.  Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode , 2011 .

[261]  Shogo Uesaka,et al.  Flexible inverted polymer solar cells containing an amorphous titanium oxide electron collection electrode , 2011 .

[262]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[263]  Neil Genzlinger A. and Q , 2006 .